An investigation of fractional Bagley-Torvik equation

被引:18
|
作者
Fazli, Hossein [1 ]
Nieto, Juan J. [2 ,3 ]
机构
[1] Univ Tabriz, Fac Math Sci, Tabriz, Iran
[2] Univ Santiago de Compostela, Dept Estadist Anal Matemat & Optimizac, Santiago De Compostela 15782, Spain
[3] Real Acad Galega Ciencias, Santiago De Compostela, A Coruna, Spain
来源
OPEN MATHEMATICS | 2019年 / 17卷
关键词
Bagley-Torvik equation; Fractional calculus; Partially fixed point; Mixed monotone operator; Existence; Uniqueness; Approximation; FIXED-POINT THEOREMS; DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION; CALCULUS;
D O I
10.1515/math-2019-0040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper the authors prove the existence as well as approximations of the solutions for the Bagley-Torvik equation admitting only the existence of a lower (coupled lower and upper) solution. Our results rely on an appropriate fixed point theorem in partially ordered normed linear spaces. Illustrative examples are included to demonstrate the validity and applicability of our technique.
引用
收藏
页码:499 / 512
页数:14
相关论文
共 50 条
  • [1] An Investigation of Fractional Bagley-Torvik Equation
    Zafar, Azhar Ali
    Kudra, Grzegorz
    Awrejcewicz, Jan
    [J]. ENTROPY, 2020, 22 (01) : 28
  • [2] Numerical Method For Fractional Bagley-Torvik Equation
    Ding, Qinxu
    Wong, Patricia J. Y.
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [3] Generalized Bagley-Torvik Equation and Fractional Oscillators
    Naber, Mark
    Lymburner, Lucas
    [J]. APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2019, 14 (01): : 164 - 187
  • [4] On the Bagley-Torvik Equation
    Atanackovic, T. M.
    Zorica, D.
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2013, 80 (04):
  • [5] A Novel Technique for Fractional Bagley-Torvik Equation
    Sakar, Mehmet Giyas
    Saldir, Onur
    Akgul, Ali
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2019, 89 (03) : 539 - 545
  • [6] An exponential spline approximation for fractional Bagley-Torvik equation
    Emadifar, Homan
    Jalilian, Reza
    [J]. BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [7] The Neumann problem for the generalized Bagley-Torvik fractional differential equation
    Svatoslav Staněk
    [J]. Fractional Calculus and Applied Analysis, 2016, 19 : 907 - 920
  • [8] THE NEUMANN PROBLEM FOR THE GENERALIZED BAGLEY-TORVIK FRACTIONAL DIFFERENTIAL EQUATION
    Stanek, Svatoslav
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (04) : 907 - 920
  • [9] Jacobi collocation methods for solving the fractional Bagley-Torvik equation
    Hou, Jianhua
    Yang, Changqing
    Lv, Xiaoguang
    [J]. IAENG International Journal of Applied Mathematics, 2020, 50 (01) : 114 - 120
  • [10] Local discontinuous Galerkin approximations to fractional Bagley-Torvik equation
    Izadi, Mohammad
    Negar, Mohammad Reza
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 4798 - 4813