New lower bounds on the size of (n,r)-arcs in PG(2,q)

被引:4
|
作者
Braun, Michael [1 ]
机构
[1] Univ Appl Sci, Fac Comp Sci, Darmstadt, Germany
关键词
arcs; integer linear programming; linear code; R)-ARCS; SETS;
D O I
10.1002/jcd.21672
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An (n,r)-arc in PG(2,q) is a set of n points such that each line contains at most r of the selected points. It is well known that (n,r)-arcs in PG(2,q) correspond to projective linear codes. Let mr(2,q) denote the maximal number n of points for which an (n,r)-arc in PG(2,q) exists. In this paper we obtain improved lower bounds on mr(2,q) by explicitly constructing (n,r)-arcs. Some of the constructed (n,r)-arcs correspond to linear codes meeting the Griesmer bound. All results are obtained by integer linear programming.
引用
下载
收藏
页码:682 / 687
页数:6
相关论文
共 50 条
  • [21] New lower bounds for seven classical Ramsey numbers R(3, q)
    Wu, Kang
    Su, Wenlong
    Luo, Haipeng
    Xu, Xiaodong
    APPLIED MATHEMATICS LETTERS, 2009, 22 (03) : 365 - 368
  • [22] The cyclic model for PG (n, q) and a construction of arcs
    Faina, G
    Kiss, G
    Marcugini, S
    Pambianco, F
    EUROPEAN JOURNAL OF COMBINATORICS, 2002, 23 (01) : 31 - 35
  • [23] COMPLETE K-ARCS IN PG(N, Q), Q EVEN
    STORME, L
    THAS, JA
    DISCRETE MATHEMATICS, 1992, 106 : 455 - 469
  • [24] On Generalized k-Arcs in $ \Bbb {PG} $(2n, q)
    B.N. Cooperstein
    J.A. Thas
    Annals of Combinatorics, 2001, 5 (2) : 141 - 152
  • [25] Addendum to "A New Proof of the existence of (q2 - q + 1)-ARCS in PG(2, q2)"
    Cossidente A.
    Journal of Geometry, 1997, 59 (1-2) : 32 - 33
  • [26] Lower bounds for multicolor classical Ramsey numbers R(q,q,•••,q)
    Su, WL
    Luo, HP
    Li, Q
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1999, 42 (10): : 1019 - 1024
  • [27] On sizes of complete arcs in PG(2, q)
    Bartoli, Daniele
    Davydov, Alexander A.
    Faina, Giorgio
    Marcugini, Stefano
    Pambianco, Fernanda
    DISCRETE MATHEMATICS, 2012, 312 (03) : 680 - 698
  • [28] A new lower bound for the smallest complete (k,n)-arc in PG(2,q)
    Alabdullah, S.
    Hirschfeld, J. W. P.
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (2-3) : 679 - 683
  • [29] On (q2 + q + 2, q + 2)-arcs in the Projective Plane PG(2, q)
    Simeon Ball
    Ray Hill
    Ivan Landjev
    Harold Ward
    Designs, Codes and Cryptography, 2001, 24 : 205 - 224
  • [30] Lower Bounds on Q for Finite Size Antennas of Arbitrary Shape (vol 64, pg 146, 2016)
    Kim, Oleksiy S.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (05) : 2773 - 2773