Characterization of anodes for lithium-ion batteries

被引:10
|
作者
Humana, R. M. [1 ,2 ]
Ortiz, M. G. [2 ,3 ]
Thomas, J. E. [2 ]
Real, S. G. [2 ,3 ]
Sedlarikova, M. [4 ]
Vondrak, J. [4 ]
Visintin, A. [2 ]
机构
[1] CONICET UNCA, Ctr Invest & Transferencia Catamarca CITCA, Prado 366,K4700AAP, San Fernando Del Valle D, Catamarca, Argentina
[2] Univ Nacl La Plata, Inst Invest Fisicoquim Teor & Aplicadas INIFTA, Fac Ciencias Exactas, CCT La Plata CONICET, CC 16,Suc 4, RA-1900 La Plata, Buenos Aires, Argentina
[3] Univ Tecnol Nacl, Fac Reg La Plata, Ctr Invest Desarrollo Ciencia & Tecnol Mat CITEMA, Calle 60 & 124, La Plata, Buenos Aires, Argentina
[4] Brno Univ Technol, Fac Elect Engn & Commun, Dept Elect & Elect Technol, Tech 10, Brno 61600, Czech Republic
关键词
NANO-SILICON; COMPOSITE; CARBON;
D O I
10.1007/s10008-015-3004-7
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The lithium-ion batteries are energy storage systems of high performance and low cost. They are employed in multiple portable devices, and these require the use of increasingly smaller and lighter batteries with high energy and power density, fast charging, and long service life, Moreover, these systems are promising for use in electric or hybrid vehicles. However, the lithium-ion battery still requires the improvement of the electrode material properties, such as cost, energy density, cycle life, safety, and environmental compatibility. These batteries use carbon as anode material, usually synthetic graphite, because of its high coulombic efficiency and acceptable specific capacity for the formation of intercalation compounds (LiC6). In this paper, the methodology used to prepare and characterize the reversible and irreversible capacity and cyclic stability of graphite materials as anodes in lithium-ion batteries of commercial carbon and shungite carbon is presented. The results obtained using electrochemical techniques are discussed. These electrodes exhibited good activation process and high-rate dischargeability performance. For carbon and shungite electrodes, the maximum discharge capacity values were 259 and 170 mA h g(-1), respectively.
引用
收藏
页码:1053 / 1058
页数:6
相关论文
共 50 条
  • [31] Electrochemical Characteristics of Nanostructured Silicon Anodes for Lithium-Ion Batteries
    Astrova, E. V.
    Li, G. V.
    Rumyantsev, A. M.
    Zhdanov, V. V.
    [J]. SEMICONDUCTORS, 2016, 50 (02) : 276 - 283
  • [32] Coaxial MnO/C nanotubes as anodes for lithium-ion batteries
    Ding, Y. L.
    Wu, C. Y.
    Yu, H. M.
    Xie, J.
    Cao, G. S.
    Zhu, T. J.
    Zhao, X. B.
    Zeng, Y. W.
    [J]. ELECTROCHIMICA ACTA, 2011, 56 (16) : 5844 - 5848
  • [33] Parasitic Reactions in Nanosized Silicon Anodes for Lithium-Ion Batteries
    Gao, Han
    Xiao, Lisong
    Plueme, Ingo
    Xu, Gui-Liang
    Ren, Yang
    Zuo, Xiaobing
    Liu, Yuzi
    Schulz, Christof
    Wiggers, Hartmut
    Amine, Khalil
    Chen, Zonghai
    [J]. NANO LETTERS, 2017, 17 (03) : 1512 - 1519
  • [34] Graphene-based nanocomposite anodes for lithium-ion batteries
    Sun, Weiwei
    Wang, Yong
    [J]. NANOSCALE, 2014, 6 (20) : 11528 - 11552
  • [35] BC cone-shaped anodes for lithium-ion batteries
    Mahal, Ahmed
    Basem, Ali
    Al-Yasiri, Mortatha
    Kaur, Jatinder
    Kaur, Ramneet
    Alawaideh, Yazen. M.
    Alotaibi, Hadil Faris
    Qiang, L.
    Zainul, Rahadian
    [J]. CHEMICAL PHYSICS, 2024, 583
  • [36] Nanostructured Si-Based Anodes for Lithium-Ion Batteries
    Zhu, Xiaoyi
    Yang, Dongjiang
    Li, Jianjiang
    Su, Fabing
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (01) : 15 - 30
  • [37] Phosphides with zinc blende structure as anodes for lithium-ion batteries
    Kishore, M. V. V. M. Satya
    Varadaraju, U. V.
    [J]. JOURNAL OF POWER SOURCES, 2006, 156 (02) : 594 - 597
  • [38] Amorphous silicon thin film anodes for lithium-ion batteries
    Maranchi, JP
    Kumta, PN
    Hepp, AF
    [J]. DEVELOPMENTS IN SOLID OXIDE FUEL CELLS AND LITHIUM ION BATTERIES, 2005, 161 : 121 - 129
  • [39] Carbon anodes for solid polymer electrolyte lithium-ion batteries
    Ito, Y.
    Kawakubo, M.
    Ueno, M.
    Okuma, H.
    Si, Q.
    Kobayashi, T.
    Hanai, K.
    Imanishi, N.
    Hirano, A.
    Phillipps, M. B.
    Takeda, Y.
    Yamamoto, O.
    [J]. JOURNAL OF POWER SOURCES, 2012, 214 : 84 - 90
  • [40] Composites of Piezoelectric Materials and Silicon as Anodes for Lithium-Ion Batteries
    Wang, Zhiguo
    Li, Zhijie
    Fu, Yong Qing
    [J]. CHEMELECTROCHEM, 2017, 4 (06): : 1523 - 1527