On the total Roman domination number of graphs

被引:0
|
作者
Ahangar, H. Abdollahzadeh [1 ]
Amjadi, J. [2 ]
Sheikholeslami, S. M. [2 ]
Soroudi, M. [2 ]
机构
[1] Babol Noshirvani Univ Technol, Dept Math, Babol, Iran
[2] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
total Roman dominating function; total Roman domination number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Roman dominating function on a graph G is a function f : V (G) -> {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. A total Roman dominating function is a Roman dominating function with the additional property that the subgraph of G induced by the set of all vertices of positive weight has no isolated vertices. The weight of a total Roman dominating function f is the value Sigma(u is an element of V(G))f(u). The total Roman domination number of G, gamma(tR)(G), is the minimum weight of a total Roman dominating function in G. In this paper, we establish some sharp bounds on the total Roman domination number of a graph. In addition, we determine the total Roman domination number of grid graphs P-2 square P-n and P-3 square P-n for n >= 2.
引用
收藏
页码:295 / 310
页数:16
相关论文
共 50 条
  • [21] DOMINATION NUMBER OF TOTAL GRAPHS
    Shariatinia, Abbas
    Maimani, Hamid Reza
    Yassemi, Siamak
    MATHEMATICA SLOVACA, 2016, 66 (06) : 1527 - 1535
  • [22] Hop total Roman domination in graphs
    Abdollahzadeh Ahangar, H.
    Chellali, M.
    Sheikholeslami, S. M.
    Soroudi, M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (01) : 73 - 78
  • [23] Some notes on the Roman domination number and Italian domination number in graphs
    Hajibaba, Maryam
    Rad, Nader Jafari
    1ST INTERNATIONAL CONFERENCE ON APPLIED & INDUSTRIAL MATHEMATICS AND STATISTICS 2017 (ICOAIMS 2017), 2017, 890
  • [24] A note on the Italian domination number and double Roman domination number in graphs
    Hajibaba, Maryam
    Rad, Nader Jafari
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 109 : 169 - 183
  • [25] On the total Roman domination stability in graphs
    Asemian, Ghazale
    Jafari Rad, Nader
    Tehranian, Abolfazl
    Rasouli, Hamid
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2021, 18 (03) : 166 - 172
  • [26] Total Roman {3}-domination in Graphs
    Shao, Zehui
    Mojdeh, Doost Ali
    Volkmann, Lutz
    SYMMETRY-BASEL, 2020, 12 (02):
  • [27] Signed total Roman domination in graphs
    Lutz Volkmann
    Journal of Combinatorial Optimization, 2016, 32 : 855 - 871
  • [28] Total double Roman domination in graphs
    Hao, Guoliang
    Volkmann, Lutz
    Mojdeh, Doost Ali
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2020, 5 (01) : 27 - 39
  • [29] Signed total Roman domination in graphs
    Volkmann, Lutz
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 32 (03) : 855 - 871
  • [30] Total Weak Roman Domination in Graphs
    Cabrera Martinez, Abel
    Montejano, Luis P.
    Rodriguez-Velazquez, Juan A.
    SYMMETRY-BASEL, 2019, 11 (06):