Vanishing viscosity limit for homogeneous axisymmetric no-swirl solutions of stationary Navier-Stokes equations

被引:7
|
作者
Li, Li [1 ]
Li, YanYan [2 ]
Yan, Xukai [3 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150080, Heilongjiang, Peoples R China
[2] Rutgers State Univ, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[3] Georgia Inst Technol, Sch Math, 686 Cherry St NW, Atlanta, GA 30313 USA
基金
美国国家科学基金会;
关键词
Vanishing viscosity limit; Homogeneous axisymmetric no-swirl solutions; Stationary Navier-Stokes equations; SIMILAR VISCOUS FLOWS; ISOLATED SINGULARITIES; ANALYTIC SOLUTIONS; INVISCID LIMIT; AXIAL CAUSES; HALF-SPACE; EULER;
D O I
10.1016/j.jfa.2019.05.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
(-1)-homogeneous axisymmetric no-swirl solutions of three dimensional incompressible stationary Navier-Stokes equations which are smooth on the unit sphere minus the north and south poles have been classified. In this paper we study the vanishing viscosity limit of sequences of these solutions. As the viscosity tends to zero, some sequences of solutions C-loc(m) converge to solutions of Euler equations on the sphere minus the poles, while for other sequences of solutions, transition layer behaviors occur. For every latitude circle, there are sequences which C-loc(m) converge respectively to different solutions of the Euler equations on the spherical caps above and below the latitude circle. We give detailed analysis of these convergence and transition layer behaviors. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:3599 / 3652
页数:54
相关论文
共 50 条
  • [31] Vanishing viscosity of isentropic Navier-Stokes equations for interacting shocks
    Huang FeiMin
    Wang Yi
    Wang Yong
    Yang Tong
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (04) : 653 - 672
  • [32] Vanishing viscosity of isentropic Navier-Stokes equations for interacting shocks
    HUANG FeiMin
    WANG Yi
    WANG Yong
    YANG Tong
    Science China Mathematics, 2015, 58 (04) : 653 - 672
  • [33] Vanishing viscosity of isentropic Navier-Stokes equations for interacting shocks
    FeiMin Huang
    Yi Wang
    Yong Wang
    Tong Yang
    Science China Mathematics, 2015, 58 : 653 - 672
  • [34] A uniqueness result for the Navier-Stokes equations with vanishing vertical viscosity
    Iftimie, D
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 33 (06) : 1483 - 1493
  • [35] Navier-Stokes equations with Coriolis force and vanishing vertical viscosity
    Colin, T
    Fabrie, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (03): : 275 - 280
  • [36] Several new regularity criteria for the axisymmetric Navier-Stokes equations with swirl
    Zhang, Zujin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (06) : 1420 - 1426
  • [37] Stability of nonswirl axisymmetric solutions to the Navier-Stokes equations
    Nowakowski, Bernard
    Zajaczkowski, Wojciech M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) : 4263 - 4278
  • [38] New Exact Axisymmetric Solutions to the Navier-Stokes Equations
    Bogoyavlenskij, Oleg
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2020, 75 (01): : 29 - 42
  • [39] NUMERICAL SOLUTIONS OF NAVIER-STOKES EQUATIONS FOR AXISYMMETRIC FLOWS
    STRAWBRIDGE, DR
    HOOPER, GTJ
    JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 1968, 10 (05): : 389 - +