Mining Spatio-Temporal Data at Different Levels of Detail

被引:0
|
作者
Camossi, Elena [1 ]
Bertolotto, Michela [1 ]
Kechadi, Tahar [1 ]
机构
[1] Natl Univ Ireland Univ Coll Dublin, Sch Informat & Comp Sci, Dublin 4, Ireland
关键词
data mining; spatio-temporal data; level of detail; large datasets; DBSCAN; FRAMEWORK; MODEL;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we propose a methodology for mining very large spatio-temporal datasets. We propose a two-pass strategy for mining and manipulating spatio-temporal datasets at different levels of detail (i.e., granularities). The approach takes advantage of the multi-granular capability of the underlying spatio-temporal model to reduce the amount of data that can be accessed initially. The approach is implemented and applied to real-world spatio-temporal datasets. We show that the technique can deal easily with very large datasets without losing the accuracy of the extracted patterns, as demonstrated in the experimental results.
引用
收藏
页码:225 / 240
页数:16
相关论文
共 50 条
  • [1] Mining spatio-temporal data
    Gennady Andrienko
    Donato Malerba
    Michael May
    Maguelonne Teisseire
    [J]. Journal of Intelligent Information Systems, 2006, 27 : 187 - 190
  • [2] Mining spatio-temporal data
    Andrienko, Gennady
    Malerba, Donato
    May, Michael
    Teisseire, Maguelonne
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2006, 27 (03) : 187 - 190
  • [3] Aggregating Spatio-temporal Phenomena at Multiple Levels of Detail
    Silva, Ricardo Almeida
    Pires, Joao Moura
    Santos, Maribel Yasmina
    Leal, Rui
    [J]. AGILE 2015: GEOGRAPHIC INFORMATION SCIENCE AS AN ENABLER OF SMARTER CITIES AND COMMUNITIES, 2015, : 291 - 308
  • [4] A survey on spatio-temporal data mining
    Vasavi, M.
    Murugan, A.
    [J]. Materials Today: Proceedings, 2023, 80 : 2769 - 2772
  • [5] Exploratory spatio-temporal data mining and visualization
    Compieta, P.
    Di Martino, S.
    Bertolotto, M.
    Ferrucci, F.
    Kechadi, T.
    [J]. JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2007, 18 (03): : 255 - 279
  • [6] A new approach for spatio-temporal data mining
    Cassat, Sabine
    Irani, Pourang
    Serrano, Marcos
    Dubois, Emmanuel
    [J]. ACTES DE LA 30 CONFERENCE FRANCOPHONE SUR L'INTERACTION HOMME-MACHINE - (IHM 2018), 2018, : 163 - 169
  • [7] Mining Spatio-Temporal Patterns in Trajectory Data
    Kang, Juyoung
    Yong, Hwan-Seung
    [J]. JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2010, 6 (04): : 521 - 536
  • [8] A visual approach for spatio-temporal data mining
    Kechadi, M-Tahar
    Bertolotto, Michela
    [J]. IRI 2006: PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, 2006, : 504 - +
  • [9] Spatio-Temporal Routine Mining on Mobile Phone Data
    Qin, Tian
    Shangguan, Wufan
    Song, Guojie
    Tang, Jie
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2018, 12 (05)
  • [10] Spatio-temporal data mining in ecological and veterinary epidemiology
    Aristides Moustakas
    [J]. Stochastic Environmental Research and Risk Assessment, 2017, 31 : 829 - 834