Low-Rank Tensor Completion Based on Log-Det Rank Approximation and Matrix Factorization

被引:17
|
作者
Shi, Chengfei [1 ]
Huang, Zhengdong [1 ]
Wan, Li [1 ]
Xiong, Tifan [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-rank tensor completion; logDet function; Matrix factorization; Alternating direction method of multipliers; IMAGE; MINIMIZATION; ALGORITHM;
D O I
10.1007/s10915-019-01009-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Rank evaluation plays a key role in low-rank tensor completion and tensor nuclear norm is often used as a substitute of rank in the optimization due to its convex property. However, this replacement often incurs unexpected errors, and since singular value decomposition is frequently involved, the computation cost of the norm is high, especially in handling large scale matrices from the mode-n unfolding of a tensor. This paper presents a novel tensor completion method, in which a non-convex logDet function is utilized to approximate the rank and a matrix factorization is adopted to reduce the evaluation cost of the function. The study shows that the logDet function is a much tighter rank approximation than the nuclear norm and the matrix factorization can significantly reduce the size of matrix that needs to be evaluated. In the implementation of the method, alternating direction method of multipliers is employed to obtain the optimal tensor completion. Several experiments are carried out to validate the method and the results show that the proposed method is effective.
引用
收藏
页码:1888 / 1912
页数:25
相关论文
共 50 条
  • [1] Low-Rank Tensor Completion Based on Log-Det Rank Approximation and Matrix Factorization
    Chengfei Shi
    Zhengdong Huang
    Li Wan
    Tifan Xiong
    [J]. Journal of Scientific Computing, 2019, 80 : 1888 - 1912
  • [2] PARALLEL MATRIX FACTORIZATION FOR LOW-RANK TENSOR COMPLETION
    Xu, Yangyang
    Hao, Ruru
    Yin, Wotao
    Su, Zhixun
    [J]. INVERSE PROBLEMS AND IMAGING, 2015, 9 (02) : 601 - 624
  • [3] Tensor Factorization for Low-Rank Tensor Completion
    Zhou, Pan
    Lu, Canyi
    Lin, Zhouchen
    Zhang, Chao
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) : 1152 - 1163
  • [4] Low-Rank Tensor Completion Using Matrix Factorization Based on Tensor Train Rank and Total Variation
    Ding, Meng
    Huang, Ting-Zhu
    Ji, Teng-Yu
    Zhao, Xi-Le
    Yang, Jing-Hua
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (02) : 941 - 964
  • [5] Low-Rank Tensor Completion Using Matrix Factorization Based on Tensor Train Rank and Total Variation
    Meng Ding
    Ting-Zhu Huang
    Teng-Yu Ji
    Xi-Le Zhao
    Jing-Hua Yang
    [J]. Journal of Scientific Computing, 2019, 81 : 941 - 964
  • [6] Low-rank tensor completion via smooth matrix factorization
    Zheng, Yu-Bang
    Huang, Ting-Zhu
    Ji, Teng-Yu
    Zhao, Xi-Le
    Jiang, Tai-Xiang
    Ma, Tian-Hui
    [J]. APPLIED MATHEMATICAL MODELLING, 2019, 70 : 677 - 695
  • [7] Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation
    Zhou, Guoxu
    Cichocki, Andrzej
    Xie, Shengli
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (06) : 2928 - 2940
  • [8] Adaptive Rank Estimation Based Tensor Factorization Algorithm for Low-Rank Tensor Completion
    Liu, Han
    Liu, Jing
    Su, Liyu
    [J]. PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 3444 - 3449
  • [9] Matrix factorization for low-rank tensor completion using framelet prior
    Jiang, Tai-Xiang
    Huang, Ting-Zhu
    Zhao, Xi-Le
    Ji, Teng-Yu
    Deng, Liang-Jian
    [J]. INFORMATION SCIENCES, 2018, 436 : 403 - 417
  • [10] Logarithmic Norm Regularized Low-Rank Factorization for Matrix and Tensor Completion
    Chen, Lin
    Jiang, Xue
    Liu, Xingzhao
    Zhou, Zhixin
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3434 - 3449