Spin-resolved quantum interference in graphene

被引:52
|
作者
Lundeberg, Mark B. [1 ]
Folk, Joshua A. [1 ]
机构
[1] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
MESOSCOPIC CONDUCTANCE FLUCTUATIONS; MAGNETIC-FIELDS;
D O I
10.1038/NPHYS1421
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The unusual electronic properties of single-layer graphene(1) make it a promising materials system for fundamental advances in physics, and an attractive platform for new device technologies. Graphene's spin-transport properties are expected to be particularly interesting, with predictions for extremely long coherence times and intrinsic spin-polarized states at zero field(2-5). To test such predictions, it is necessary to measure the spin polarization of electrical currents in graphene. Here, we resolve spin transport directly from conductance features that are caused by quantum interference. These features split visibly in an in-plane magnetic field, similar to Zeeman splitting in atomic and quantum-dot systems(6,7). The spin-polarized conductance features that are the subject of this work may, in the future, lead to the development of graphene devices incorporating interference-based spin filters.
引用
收藏
页码:894 / 897
页数:4
相关论文
共 50 条
  • [21] Spin-resolved photoemission spectroscopy
    Kakizaki, A
    [J]. ACTA PHYSICA POLONICA A, 1997, 91 (04) : 649 - 658
  • [22] Probing spin states in quantum dots by spin-resolved one-dimensional contacts
    Hitachi, K.
    Yamamoto, M.
    Tarucha, S.
    [J]. LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 1367 - +
  • [23] Selective spin-resolved edge-current injection into a quantum antidot
    Kataoka, M
    Ford, CJB
    Simmons, MY
    Ritchie, DA
    [J]. PHYSICAL REVIEW B, 2003, 68 (15):
  • [24] SPIN-RESOLVED FEMTOSECOND MAGNETOEXCITON INTERACTIONS IN GAAS QUANTUM-WELLS
    STARK, JB
    KNOX, WH
    CHEMLA, DS
    [J]. PHYSICAL REVIEW B, 1992, 46 (12): : 7919 - 7922
  • [25] Selective spin-resolved edge-current injection into a quantum antidot
    Kataoka, M
    Ford, CJB
    Simmons, MY
    Ritchie, DA
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 22 (1-3): : 168 - 172
  • [26] Spin-resolved conductance quantization in InAs
    Lehmann, H.
    Benter, T.
    von Ahnen, I.
    Jacob, J.
    Matsuyama, T.
    Merkt, U.
    Kunze, U.
    Wieck, A. D.
    Reuter, D.
    Heyn, C.
    Hansen, W.
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2014, 29 (07)
  • [27] Towards an Electronic Interferometer based on Spin-Resolved Quantum Hall Edge States
    Karmakar, B.
    Venturelli, D.
    Chirolli, L.
    Taddei, F.
    Giovannetti, V.
    Fazio, R.
    Roddaro, S.
    Biasiol, G.
    Sorba, L.
    Pfeiffer, L. N.
    West, K. W.
    Pellegrini, V.
    Beltram, F.
    [J]. 20TH INTERNATIONAL CONFERENCE ON THE APPLICATION OF HIGH MAGNETIC FIELDS IN SEMICONDUCTOR PHYSICS (HMF-20), 2013, 456
  • [28] FACILITIES FOR SPIN-RESOLVED PHOTOEMISSION AT THE SRS
    QUINN, FM
    SEDDON, EA
    KIRKMAN, IW
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1995, 66 (02): : 1564 - 1566
  • [29] Spin-resolved magneto-optical study of CdSe single quantum dot
    Chen, Zhanghai
    Bai, L. H.
    Huang, S. H.
    Xiong, H.
    Shen, S. C.
    Souma, I.
    Hyomi, K.
    Murayama, A.
    Oka, Y.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (8-9): : 1549 - 1554
  • [30] Spin-resolved transport through a quantum dot driven by bias and temperature gradient
    Niu, Peng-Bin
    Liu, Lixiang
    Su, Xiaoqiang
    Dong, Lijuan
    Shi, Yunlong
    Luo, Hong-Gang
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 119