Dominance of a single topological sector in gauge theory on non-commutative geometry

被引:6
|
作者
Aoki, Hajime [1 ]
Nishimura, Jun [2 ,3 ]
Susaki, Yoshiaki [2 ]
机构
[1] Saga Univ, Dept Phys, Saga 8408502, Japan
[2] High Energy Accelerator Res Org, KEK Theory Ctr, Tsukuba, Ibaraki 3050801, Japan
[3] Grad Univ Adv Studies SOKENDAI, Dept Particle & Nucl Phys, Tsukuba, Ibaraki 3050801, Japan
来源
关键词
Non-Commutative Geometry; Nonperturbative effects; EXACTLY MASSLESS QUARKS; YANG-MILLS; CHIRAL-SYMMETRY; REDUCED MODEL; LATTICE; EXPANSION;
D O I
10.1088/1126-6708/2009/09/084
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We demonstrate a striking effect of non-commutative (NC) geometry on topological properties of gauge theory by Monte Carlo simulations. We study 2d U(1) NC gauge theory for various boundary conditions using a new finite-matrix formulation proposed recently. We find that a single topological sector dictated by the boundary condition dominates in the continuum limit. This is in sharp contrast to the results in commutative space-time based on lattice gauge theory, where all topological sectors appear with certain weights in the continuum limit. We discuss possible implications of this effect in the context of string theory compactifications and in field theory contexts.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Towards non-commutative topological gauge theory of gravity
    Garcia-Compeán, H
    Obregón, O
    Ramirez, C
    Sabido, M
    [J]. DEVELOPMENTS IN MATHEMATICAL AND EXPERIMENTAL PHYSICS, VOL A: COSMOLOGY AND GRAVITATION, 2002, : 71 - 78
  • [2] Gauge theories and non-commutative geometry
    Iliopoulos, J
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2006, 54 (2-3): : 139 - 145
  • [3] Gauge theories and non-commutative geometry
    Floratos, EG
    Iliopoulos, J
    [J]. PHYSICS LETTERS B, 2006, 632 (04) : 566 - 570
  • [4] Reconstruction of the spontaneously broken gauge theory in non-commutative geometry
    Okumura, Y
    Morita, K
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1996, 109 (03): : 311 - 326
  • [5] Gauge theory on discrete spaces without recourse to non-commutative geometry
    Konisi, G
    Saito, T
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1996, 95 (03): : 657 - 664
  • [6] Gauge Theories and non-Commutative Geometry A review
    Iliopoulos, John
    [J]. 6TH INTERNATIONAL CONFERENCE ON NEW FRONTIERS IN PHYSICS (ICNFP 2017), 2018, 182
  • [7] Geometry of the gauge algebra in non-commutative Yang-Mills theory
    Lizzi, F
    Zampini, A
    Szabo, RJ
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2001, (08): : 1 - 53
  • [8] String theory and non-commutative gauge theory
    Witten, E
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (05) : 1299 - 1305
  • [9] Solitons in non-commutative gauge theory
    Gross, DJ
    Nekrasov, NA
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2001, (03):
  • [10] Topological Insulators from the Perspective of Non-commutative Geometry and Index Theory
    Schulz-Baldes H.
    [J]. Jahresbericht der Deutschen Mathematiker-Vereinigung, 2016, 118 (4) : 247 - 273