Gauge theory on discrete spaces without recourse to non-commutative geometry

被引:18
|
作者
Konisi, G
Saito, T
机构
[1] Department of Physics, Kwansei Gakuin University
来源
PROGRESS OF THEORETICAL PHYSICS | 1996年 / 95卷 / 03期
关键词
D O I
10.1143/PTP.95.657
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Without recourse to any knowledge of the non-commutative geometry (NCG) such as the matrix formalism of Connes or the one-form chi(h) Of Sitarz, we construct gauge theories on M(4) x Z(N), where M(4) is the 4-dimensional space-time and Z(N) the supplemented extra discrete space. As an example we apply this to the reconstruction of the Weinberg-Salam model for electroweak interactions.
引用
收藏
页码:657 / 664
页数:8
相关论文
共 50 条
  • [1] Gauge theories and non-commutative geometry
    Floratos, EG
    Iliopoulos, J
    [J]. PHYSICS LETTERS B, 2006, 632 (04) : 566 - 570
  • [2] Gauge theories and non-commutative geometry
    Iliopoulos, J
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2006, 54 (2-3): : 139 - 145
  • [3] Reconstruction of the spontaneously broken gauge theory in non-commutative geometry
    Okumura, Y
    Morita, K
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1996, 109 (03): : 311 - 326
  • [4] Non-commutative differential geometry on discrete space M(4)xZ(N) and gauge theory
    Okumura, Y
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1996, 96 (05): : 1021 - 1035
  • [5] Dominance of a single topological sector in gauge theory on non-commutative geometry
    Aoki, Hajime
    Nishimura, Jun
    Susaki, Yoshiaki
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2009, (09):
  • [6] Geometry of the gauge algebra in non-commutative Yang-Mills theory
    Lizzi, F
    Zampini, A
    Szabo, RJ
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2001, (08): : 1 - 53
  • [7] Gauge Theories and non-Commutative Geometry A review
    Iliopoulos, John
    [J]. 6TH INTERNATIONAL CONFERENCE ON NEW FRONTIERS IN PHYSICS (ICNFP 2017), 2018, 182
  • [8] String theory and non-commutative gauge theory
    Witten, E
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (05) : 1299 - 1305
  • [9] Solitons in non-commutative gauge theory
    Gross, DJ
    Nekrasov, NA
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2001, (03):
  • [10] Gauge fields on non-commutative spaces and renormalization
    Blaschke, Daniel N.
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2014, 62 (9-10): : 820 - 824