Spherical Surfaces

被引:7
|
作者
Brander, David [1 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, Matemat Torvet,Bldg 303 B, DK-2800 Lyngby, Denmark
关键词
differential geometry; integrable systems; loop groups; spherical surfaces; constant Gauss curvature; singularities; Cauchy problem; CONSTANT MEAN-CURVATURE; HARMONIC MAPS; SINGULARITIES;
D O I
10.1080/10586458.2015.1077359
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the surfaces of constant positive Gauss curvature in Euclidean 3-space via the harmonicity of the Gauss map. Using the loop group representation, we solve the regular and the singular geometric Cauchy problems for these surfaces, and use these solutions to compute several new examples. We give the criteria on the geometric Cauchy data for the generic singularities, as well as for the cuspidal beaks and cuspidal butterfly singularities. We consider the bifurcations of generic one-parameter families of spherical fronts and provide evidence that suggests that these are the cuspidal beaks, cuspidal butterfly, and one other singularity. We also give the loop group potentials for spherical surfaces with finite-order rotational symmetries and for surfaces with embedded isolated singularities.
引用
收藏
页码:257 / 272
页数:16
相关论文
共 50 条
  • [21] SPHERICAL LARGE INTELLIGENT SURFACES
    Hu, Sha
    Rusek, Fredrik
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8673 - 8677
  • [22] Designing spherical knitted surfaces
    Beker, A. I.
    Belyaev, O. F.
    Viktorov, V. N.
    Zavaruev, V. A.
    [J]. FIBRE CHEMISTRY, 2013, 44 (06) : 391 - 392
  • [23] Designing spherical knitted surfaces
    A. I. Beker
    O. F. Belyaev
    V. N. Viktorov
    V. A. Zavaruev
    [J]. Fibre Chemistry, 2013, 44 : 391 - 392
  • [24] Stresses in coatings on spherical surfaces
    Kroupa, Frantisek
    [J]. Acta Technica CSAV (Ceskoslovensk Akademie Ved), 1994, 39 (04): : 449 - 467
  • [25] ABSOLUTE CALIBRATION OF SPHERICAL SURFACES
    GUBIN, VB
    SHARONOV, VN
    [J]. SOVIET JOURNAL OF OPTICAL TECHNOLOGY, 1990, 57 (09): : 554 - 555
  • [26] ON LOCATION DOMINANCE ON SPHERICAL SURFACES
    DREZNER, Z
    [J]. OPERATIONS RESEARCH, 1981, 29 (06) : 1218 - 1219
  • [27] A characterization of spherical polyhedral surfaces
    Luo, Feng
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2006, 74 (03) : 407 - 424
  • [28] An automated subaperture stitching interferometer workstation for spherical and spherical surfaces
    Fleig, J
    Dumas, P
    Murphy, PE
    Forbes, GW
    [J]. ADVANCED CHARACTERIZATION TECHNIQUES FOR OPTICS, SEMICONDUCTORS, AND NANOTECHNOLOGIES, 2003, 5188 : 296 - 307
  • [29] Slow motion of a spherical particle in a spherical cavity with slip surfaces
    Lee, Tai C.
    Keh, Huan J.
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2013, 69 : 1 - 15
  • [30] A proof of the spherical homeomorphism conjecture for surfaces
    Abrams, L
    Fishkind, DE
    Priebe, CE
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (12) : 1564 - 1566