Spherical Surfaces

被引:7
|
作者
Brander, David [1 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, Matemat Torvet,Bldg 303 B, DK-2800 Lyngby, Denmark
关键词
differential geometry; integrable systems; loop groups; spherical surfaces; constant Gauss curvature; singularities; Cauchy problem; CONSTANT MEAN-CURVATURE; HARMONIC MAPS; SINGULARITIES;
D O I
10.1080/10586458.2015.1077359
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the surfaces of constant positive Gauss curvature in Euclidean 3-space via the harmonicity of the Gauss map. Using the loop group representation, we solve the regular and the singular geometric Cauchy problems for these surfaces, and use these solutions to compute several new examples. We give the criteria on the geometric Cauchy data for the generic singularities, as well as for the cuspidal beaks and cuspidal butterfly singularities. We consider the bifurcations of generic one-parameter families of spherical fronts and provide evidence that suggests that these are the cuspidal beaks, cuspidal butterfly, and one other singularity. We also give the loop group potentials for spherical surfaces with finite-order rotational symmetries and for surfaces with embedded isolated singularities.
引用
收藏
页码:257 / 272
页数:16
相关论文
共 50 条
  • [2] Inverse spherical surfaces
    Casciola, G
    Morigi, S
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 176 (02) : 411 - 424
  • [3] GRINDING OF SPHERICAL SURFACES
    OCZOS, K
    DZIOCH, T
    [J]. MECHANIK MIESIECZNIK NAUKOWO-TECHNICZNY, 1979, 52 (11): : 591 - 595
  • [4] EVALUATION OF SPHERICAL SURFACES
    MURTHY, TSR
    RAO, BR
    ABDIN, SZ
    [J]. WEAR, 1979, 57 (01) : 167 - 184
  • [5] Hyperuniformity on spherical surfaces
    Meyra, Ariel G.
    Zarragoicoechea, Guillermo J.
    Maltz, Alberto L.
    Lomba, Enrique
    Torquato, Salvatore
    [J]. PHYSICAL REVIEW E, 2019, 100 (02)
  • [6] SEPARATION BY SPHERICAL SURFACES
    LAY, SR
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (10): : 1112 - &
  • [7] MILLING SPHERICAL SURFACES
    MIROSHNICHENKO, VD
    POLYAKOV, VI
    RYABTSEV, VD
    [J]. SOVIET JOURNAL OF OPTICAL TECHNOLOGY, 1979, 46 (07): : 412 - 414
  • [8] MACHINING OF SPHERICAL SURFACES
    TOWN, HC
    [J]. MACHINERY AND PRODUCTION ENGINEERING, 1977, 131 (3370): : 50 - 52
  • [9] NEARLY SPHERICAL SURFACES
    POGORELO.AV
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1967, 19 : 313 - &
  • [10] THE CHARACTERIZATION OF SPHERICAL SURFACES
    GAULER, A
    [J]. WEAR, 1982, 83 (01) : 109 - 118