This paper deals with the construction of analytic numerical solutions of initial value problems for the time dependent coefficient wave equation. The proposed analytic numerical approximation is constructed after obtaining an integral expression of the exact solution and further numerical integration. The exact integral expression of the solution is achieved using Fourier transforms and the numerical integration is based on truncation and the composite Simpson rule. Aproximations can be symbolically obtained using Mathematica 4.0. A priori error bounds for the approximation in terms of data problem are given.
机构:
St. Petersburg Department, V.A. Steklov Institute of Mathematics, St. Petersburg 191023, 27, FontankaSt. Petersburg Department, V.A. Steklov Institute of Mathematics, St. Petersburg 191023, 27, Fontanka
机构:
Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, FranceInst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
Petkov, Vesselin
Tzvetkov, Nikolay
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cergy Pontoise, Dept Math AGM, 2 Av Adolphe Chauvin, F-95302 Cergy Pontoise, FranceInst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France