A sparse memory allocation data structure for sequential and parallel association rule mining

被引:10
|
作者
Soysal, Oemer M. [1 ]
Gupta, Eera [1 ]
Donepudi, Harisha [1 ]
机构
[1] Louisiana State Univ, Highway Safety Res Grp, 3535 Nicholson Ext, Baton Rouge, LA 70803 USA
来源
JOURNAL OF SUPERCOMPUTING | 2016年 / 72卷 / 02期
关键词
Association rule mining; Multi-thread; Multi-core; Parallel computing; Apriori; Fp-growth; Sparse memory allocation; FREQUENT; ALGORITHMS; DISCOVERY; ITEMSETS;
D O I
10.1007/s11227-015-1566-x
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a sparse memory allocation data structure for sequential and parallel data mining. We explored three algorithms utilizing the proposed data structure: MASP-tree, apriori-TID, and FP-growth. We modified the data structure of apriori-TID and FP-growth algorithms to reduce memory allocation cost. Five data sets are used for comparison. The results show that the modified apriori-TID has a higher speed-up than the modified FP-growth when the proposed data structure is used. A maximum speed-up of 3.42 is observed when MASP algorithm is tested.
引用
收藏
页码:347 / 370
页数:24
相关论文
共 50 条
  • [31] Strategies for partitioning data in association rule mining
    Ahmed, S
    Coenen, R
    Leng, P
    [J]. RESEARCH AND DEVELOPMENT IN INTELLIGENT SYSTEMS XX, 2004, : 127 - 139
  • [32] Association Rule Data Mining in Agriculture - A Review
    Vignesh, N.
    Vinutha, D. C.
    [J]. COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 233 - 239
  • [33] An efficient association rule mining for XML data
    Khaing, Myint Myint
    Thein, Nilar
    [J]. 2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, : 2843 - +
  • [34] Data squashing as preprocessing in association rule mining
    Fister, Iztok
    Fister, Iztok, Jr.
    Novak, Damijan
    Verber, Domen
    [J]. 2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1720 - 1725
  • [35] Effective rule mining of sparse data based on transfer learning
    Yongjiao Sun
    Jiancheng Guo
    Boyang Li
    Nur Al Hasan Haldar
    [J]. World Wide Web, 2023, 26 : 461 - 480
  • [36] Effective rule mining of sparse data based on transfer learning
    Sun, Yongjiao
    Guo, Jiancheng
    Li, Boyang
    Haldar, Nur Al Hasan
    [J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (01): : 461 - 480
  • [37] Operating Optimization of Steam Turbine Unit Based on Big Data Parallel Association Rule Mining
    Lin, Jinxing
    Lu, Mingjie
    Jiang, Yongjiang
    Fu, Rong
    Peng, Xianyong
    Wu, Edmond Q. Q.
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2023, 21 (03) : 1 - 11
  • [38] Parallel Evolutionary Association Rule Mining for Efficient Summarization of Wireless Sensor Network Data Pattern
    Wedashwara, Wirarama
    Mabu, Shingo
    Ahmadi, Candra
    [J]. 2017 5TH INTERNATIONAL CONFERENCE ON CYBER AND IT SERVICE MANAGEMENT (CITSM 2017), 2017, : 55 - 60
  • [39] Parallel sequential pattern mining of massive trajectory data
    Qiao S.
    Li T.
    Peng J.
    Qiu J.
    [J]. International Journal of Computational Intelligence Systems, 2010, 3 (03) : 343 - 356
  • [40] Parallel Privacy Preserving Association rule mining on pc Clusters
    Ramaiah, B. Janaki
    Reddy, A. Rama Mohan
    Kumari, M. Kamala
    [J]. 2009 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE, VOLS 1-3, 2009, : 1538 - +