Deep Convolutional Long Short-Term Memory Network for Fetal Heart Rate Extraction

被引:0
|
作者
Fotiadou, E. [1 ]
Xu, M. [1 ]
van Erp, B. [1 ]
van Sloun, R. J. G. [1 ]
Vullings, R. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, NL-5612 AP Eindhoven, Netherlands
关键词
ECG;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Fetal electrocardiography is a valuable alternative to standard fetal monitoring. Suppression of the maternal electrocardiogram (ECG) in the abdominal measurements, results in fetal ECG signals, from which the fetal heart rate (HR) can be determined. This HR detection typically requires fetal R-peak detection, which is challenging, especially during low signal-to-noise ratio periods, caused for example by uterine activity. In this paper, we propose the combination of a convolutional neural network and a long short-term memory network that directly predicts the fetal HR from multichannel fetal ECG. The network is trained on a dataset, recorded during labor, while the performance of the method is evaluated both on a test dataset and on set-A of the 2013 Physionet /Computing in Cardiology Challenge. The algorithm achieved a positive percent agreement of 92.1% and 98.1% for the two datasets respectively, outperforming a top-performing state-of-the-art signal processing algorithm.
引用
收藏
页码:608 / 611
页数:4
相关论文
共 50 条
  • [31] Intelligent and Adaptive Web Data Extraction System Using Convolutional and Long Short-Term Memory Deep Learning Networks
    Patnaik, Sudhir Kumar
    Babu, C. Narendra
    Bhave, Mukul
    BIG DATA MINING AND ANALYTICS, 2021, 4 (04) : 279 - 297
  • [32] Classification of Power Quality Disturbances Using Convolutional Network and Long Short-Term Memory Network
    Rodrigues Junior, Wilson Leal
    Silva Borges, Fabbio Anderson
    Lira Rabelo, Ricardo de A.
    Alves de Lima, Bruno Vicente
    Almeida de Alencar, Jose Eduardo
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [33] Intelligent and Adaptive Web Data Extraction System Using Convolutional and Long Short-Term Memory Deep Learning Networks
    Sudhir Kumar Patnaik
    C.Narendra Babu
    Mukul Bhave
    Big Data Mining and Analytics, 2021, 4 (04) : 279 - 297
  • [34] Hybrid Deep Learning Network Intrusion Detection System Based on Convolutional Neural Network and Bidirectional Long Short-Term Memory
    Jihado, Anindra Ageng
    Girsang, Abba Suganda
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2024, 15 (02) : 219 - 232
  • [35] Multimode Gesture Recognition Algorithm Based on Convolutional Long Short-Term Memory Network
    Lu, Ming-Xing
    Du, Guo-Zhen
    Li, Zhan-Fang
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [36] Missing well log prediction using convolutional long short-term memory network
    Nam Pham
    Wu, Xinming
    Naeini, Ehsan Zabihi
    GEOPHYSICS, 2020, 85 (04) : WA159 - WA171
  • [37] Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia
    Picon, Artzai
    Irusta, Unai
    Alvarez-Gila, Aitor
    Aramendi, Elisabete
    Alonso-Atienza, Felipe
    Figuera, Carlos
    Ayala, Unai
    Garrote, Estibaliz
    Wik, Lars
    Kramer-Johansen, Jo
    Eftestol, Trygve
    PLOS ONE, 2019, 14 (05):
  • [38] Exposing DeepFake Video Detection Based on Convolutional Long Short-Term Memory Network
    Zheng Bowen
    Xia Huawei
    Chen Ruidong
    Han Qiankun
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (24)
  • [39] Long short-term memory and convolutional neural network for abnormal driving behaviour recognition
    Jia, Shuo
    Hui, Fei
    Li, Shining
    Zhao, Xiangmo
    Khattak, Asad J.
    IET INTELLIGENT TRANSPORT SYSTEMS, 2020, 14 (05) : 306 - 312
  • [40] CONVOLUTIONAL LONG SHORT-TERM MEMORY NETWORK FOR MULTITEMPORAL CLOUD DETECTION OVER LANDMARKS
    Mateo-Garcia, Gonzalo
    Adsuara, Jose E.
    Perez-Suay, Adrian
    Gomez-Chova, Luis
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 210 - 213