MRobust: A Method for Robustness against Adversarial Attacks on Deep Neural Networks

被引:0
|
作者
Liu, Yi-Ling [1 ]
Lomuscio, Alessio [1 ]
机构
[1] Imperial Coll London, London, England
关键词
D O I
10.1109/ijcnn48605.2020.9207354
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel black-box adversarial training algorithm to defend against state-of-the-art attack methods in machine learning. In order to search for an adversarial attack, the algorithm analyses small regions around the input that are likely to make significant contributions for the generation of adversarial samples. Unlike some of the literature in the area, the proposed method does not require access to the internal layers of the model and is therefore applicable to applications such as security. We report the experimental results obtained on models of different sizes built for the MNIST and CIFAR10 datasets. The results suggest that known attacks on the resulting models are less transferable than those models trained by state-of-the art attack algorithms.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Understanding Generalization in Neural Networks for Robustness against Adversarial Vulnerabilities
    Chaudhury, Subhajit
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 13714 - 13715
  • [42] A Data Augmentation-Based Defense Method Against Adversarial Attacks in Neural Networks
    Zeng, Yi
    Qiu, Han
    Memmi, Gerard
    Qiu, Meikang
    [J]. ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2020, PT II, 2020, 12453 : 274 - 289
  • [43] Unravelling Robustness of Deep Learning Based Face Recognition against Adversarial Attacks
    Goswami, Gaurav
    Ratha, Nalini
    Agarwal, Akshay
    Singh, Richa
    Vatsa, Mayank
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 6829 - 6836
  • [44] Jujutsu: A Two-stage Defense against Adversarial Patch Attacks on Deep Neural Networks
    Chen, Zitao
    Dash, Pritam
    Pattabiraman, Karthik
    [J]. PROCEEDINGS OF THE 2023 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, ASIA CCS 2023, 2023, : 689 - 703
  • [45] Bluff: Interactively Deciphering Adversarial Attacks on Deep Neural Networks
    Das, Nilaksh
    Park, Haekyu
    Wang, Zijie J.
    Hohman, Fred
    Firstman, Robert
    Rogers, Emily
    Chau, Duen Horng
    [J]. 2020 IEEE VISUALIZATION CONFERENCE - SHORT PAPERS (VIS 2020), 2020, : 271 - 275
  • [46] Hardware Accelerator for Adversarial Attacks on Deep Learning Neural Networks
    Guo, Haoqiang
    Peng, Lu
    Zhang, Jian
    Qi, Fang
    Duan, Lide
    [J]. 2019 TENTH INTERNATIONAL GREEN AND SUSTAINABLE COMPUTING CONFERENCE (IGSC), 2019,
  • [47] Evaluating Robustness of Deep Image Super-Resolution Against Adversarial Attacks
    Choi, Jun-Ho
    Zhang, Huan
    Kim, Jun-Hyuk
    Hsieh, Cho-Jui
    Lee, Jong-Seok
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 303 - 311
  • [48] Securing Deep Spiking Neural Networks against Adversarial Attacks through Inherent Structural Parameters
    El-Allami, Rida
    Marchisio, Alberto
    Shafique, Muhammad
    Alouani, Ihsen
    [J]. PROCEEDINGS OF THE 2021 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2021), 2021, : 774 - 779
  • [49] Reinforced Adversarial Attacks on Deep Neural Networks Using ADMM
    Zhao, Pu
    Xu, Kaidi
    Zhang, Tianyun
    Fardad, Makan
    Wang, Yanzhi
    Lin, Xue
    [J]. 2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 1169 - 1173
  • [50] Adversarial Attacks on Deep Neural Networks Based Modulation Recognition
    Liu, Mingqian
    Zhang, Zhenju
    Zhao, Nan
    Chen, Yunfei
    [J]. IEEE INFOCOM 2022 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2022,