Adaptive mesh refinement for localised phenomena

被引:13
|
作者
Selman, A
Hinton, E
Bicanic, N
机构
[1] UNIV COLL SWANSEA,DEPT CIVIL ENGN,SWANSEA SA2 8PP,W GLAM,WALES
[2] UNIV GLASGOW,DEPT CIVIL ENGN,GLASGOW G12 8QQ,LANARK,SCOTLAND
关键词
D O I
10.1016/S0045-7949(96)00372-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The present work is concerned with the development, testing and use of finite element based methods in conjunction with adaptive mesh refinement procedures for the solution of three types of static and dynamic stress analysis problems. First, an adaptive mesh refinement procedure is introduced and used in static plate bending finite element analysis based on Mindlin-Reissner assumptions to Study the edge effects which occur in plates with certain types of boundary conditions. Several issues of finite element mesh dependence and adaptivity in strain localisation problems are then discussed and illustrated. Finally, adaptive finite element methods for the solution of two-dimensional transient dynamic stress analysis problems are developed and tested on some benchmark examples. In all cases cited above there is a need to refine the finite element mesh locally in certain zones either within or at the boundary of the domain under consideration. In the transient dynamic analysis there is a further problem; these zones will move with time. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:475 / 495
页数:21
相关论文
共 50 条
  • [41] Adaptive mesh refinement for magnetic stimulation modeling
    Sawicki, Bartosz
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (05): : 152 - 154
  • [42] Adaptive mesh refinement for multiscale nonequilibrium physics
    Martin, DF
    Colella, P
    Anghel, M
    Alexander, FJ
    COMPUTING IN SCIENCE & ENGINEERING, 2005, 7 (03) : 24 - 31
  • [43] LOCAL ADAPTIVE MESH REFINEMENT FOR SHOCK HYDRODYNAMICS
    BERGER, MJ
    COLELLA, P
    JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (01) : 64 - 84
  • [44] Visualization of scalar adaptive mesh refinement data
    Weber, G. H.
    Beckner, V. E.
    Childs, H.
    Ligocki, T. J.
    Miller, M. C.
    Van Straaleni, B.
    Bethel, E. W.
    NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2007, 2008, 385 : 309 - +
  • [45] ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS
    Bryan, Greg L.
    Norman, Michael L.
    O'Shea, Brian W.
    Abel, Tom
    Wise, John H.
    Turk, Matthew J.
    Reynolds, Daniel R.
    Collins, David C.
    Wang, Peng
    Skillman, Samuel W.
    Smith, Britton
    Harkness, Robert P.
    Bordner, James
    Kim, Ji-hoon
    Kuhlen, Michael
    Xu, Hao
    Goldbaum, Nathan
    Hummels, Cameron
    Kritsuk, Alexei G.
    Tasker, Elizabeth
    Skory, Stephen
    Simpson, Christine M.
    Hahn, Oliver
    Oishi, Jeffrey S.
    So, Geoffrey C.
    Zhao, Fen
    Cen, Renyue
    Li, Yuan
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2014, 211 (02):
  • [46] On adaptive mesh refinement for atmospheric pollution models
    Constantinescu, EM
    Sandu, A
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 2, 2005, 3515 : 798 - 805
  • [47] GRChombo: Numerical relativity with adaptive mesh refinement
    Clough, Katy
    Figueras, Pau
    Finkel, Hal
    Kunesch, Markus
    Lim, Eugene A.
    Tunyasuvunakool, Saran
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (24)
  • [48] Adaptive mesh refinement/recovery strategy for FEA
    Choi, CK
    Lee, EJ
    Yu, WJ
    STRUCTURAL ENGINEERING AND MECHANICS, 2004, 17 (3-4) : 379 - 391
  • [49] A flexible kernel for adaptive mesh refinement on GPU
    Boubekeur, T.
    Schlick, C.
    COMPUTER GRAPHICS FORUM, 2008, 27 (01) : 102 - 113
  • [50] Fluids in the universe: Adaptive mesh refinement in cosmology
    Bryan, GL
    COMPUTING IN SCIENCE & ENGINEERING, 1999, 1 (02) : 46 - 53