Nonparametric predictive inference for diagnostic test thresholds

被引:3
|
作者
Coolen-Maturi, Tahani [1 ]
Coolen, Frank P. A. [1 ]
Alabdulhadi, Manal [2 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
[2] Qassim Univ, Dept Math, Qasim, Saudi Arabia
关键词
Diagnostic accuracy; lower and upper probability; imprecise probability; nonparametric predictive inference; Youden index; thresholds; YOUDEN INDEX; ROC ANALYSIS; ACCURACY; INTERVALS;
D O I
10.1080/03610926.2018.1549249
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine, machine learning and credit scoring. The receiver operating characteristic (ROC) curve and surface are useful tools to assess the ability of diagnostic tests to discriminate between ordered classes or groups. To define these diagnostic tests, selecting the optimal thresholds that maximize the accuracy of these tests is required. One procedure that is commonly used to find the optimal thresholds is by maximizing what is known as Youden's index. This article presents nonparametric predictive inference (NPI) for selecting the optimal thresholds of a diagnostic test. NPI is a frequentist statistical method that is explicitly aimed at using few modeling assumptions, enabled through the use of lower and upper probabilities to quantify uncertainty. Based on multiple future observations, the NPI approach is presented for selecting the optimal thresholds for two-group and three-group scenarios. In addition, a pairwise approach has also been presented for the three-group scenario. The article ends with an example to illustrate the proposed methods and a simulation study of the predictive performance of the proposed methods along with some classical methods such as Youden index. The NPI-based methods show some interesting results that overcome some of the issues concerning the predictive performance of Youden's index.
引用
收藏
页码:697 / 725
页数:29
相关论文
共 50 条
  • [21] Nonparametric predictive inference for subcategory data
    Baker, R. M.
    Coolen-Schrijner, P.
    Coolen, F. P. A.
    Augustin, T.
    ISIPTA '11 - PROCEEDINGS OF THE SEVENTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS, 2011, : 51 - 60
  • [22] Diagnostic test thresholds
    Laking, G.
    INTERNAL MEDICINE JOURNAL, 2008, 38 (07) : 614 - U7
  • [23] Predictive inference for bivariate data: Combining nonparametric predictive inference for marginals with an estimated copula
    Coolen-Maturi T.
    Coolen F.P.A.
    Muhammad N.
    Journal of Statistical Theory and Practice, 2016, 10 (3) : 515 - 538
  • [24] Bayesian nonparametric predictive inference and bootstrap techniques
    Muliere, P
    Secchi, P
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1996, 48 (04) : 663 - 673
  • [25] Nonparametric Predictive Inference for Discrete Lifetime Data
    Coolen, Frank P. A.
    Coolen-Maturi, Tahani
    Mahnashi, Ali M. Y.
    MATHEMATICS, 2024, 12 (22)
  • [26] Nonparametric predictive inference for grouped lifetime data
    Coolen, FPA
    Yan, KJ
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2003, 80 (03) : 243 - 252
  • [27] Predictive Inference for Bivariate Data with Nonparametric Copula
    Muhammad, Noryanti
    Coolen, Frank P. A.
    Coolen-Maturi, Tahani
    ADVANCES IN INDUSTRIAL AND APPLIED MATHEMATICS, 2016, 1750
  • [28] NONPARAMETRIC INFERENCE FOR IMMUNE RESPONSE THRESHOLDS OF RISK IN VACCINE STUDIES
    Donovan, Kevin M.
    Hudgens, Michael G.
    Gilbert, Peter B.
    ANNALS OF APPLIED STATISTICS, 2019, 13 (02): : 1147 - 1165
  • [29] Nonparametric Predictive Inference Bootstrap with Application to Reproducibility of the Two-Sample Kolmogorov–Smirnov Test
    Frank P. A. Coolen
    Sulafah Bin Himd
    Journal of Statistical Theory and Practice, 2020, 14
  • [30] Diagnostic test thresholds - Reply
    Gillman, A. J.
    Steinfort, C.
    INTERNAL MEDICINE JOURNAL, 2008, 38 (07)