Two Co(II)/Ni(II) isostructural Metal-Organic Frameworks with bnn topology for photocatalysis and electrocatalysis

被引:13
|
作者
Qin, Ling [1 ,2 ]
Hu, Qing [1 ]
Zou, Ying-Pei [1 ]
Fu, Wen-Ping [1 ]
Ye, Tong-Qi [1 ]
Zhang, Ming-Dao [3 ]
机构
[1] Hefei Univ Technol, Sch Chem & Chem Engn, Hefei 230009, Anhui, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Sch Chem & Chem Engn, State Key Lab Coordinat Chem, Nanjing 210023, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Atmospher Environm & Equip, Sch Environm Sci & Engn, Jiangsu Key Lab Atmospher Environm Monitoring & P, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Electrocatalysis; Metal-organic framework; bnn topology; 3-Fold interpenetration; Dye adsorption and degradation; NANOSTRUCTURES; NANOMATERIALS; DEGRADATION; COMPOSITE; PHOSPHIDE; ACID;
D O I
10.1016/j.micromeso.2020.110813
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Two isostructural Co(II) and Ni(II)-based Metal-Organic Frameworks (MOFs), {[Co(bcpt)(bib)(3/2)(H2O)]center dot H2O}(n) (1), {[Ni(bcpt)(bib)(3/2)(H2O)]center dot H2O}(n) (2), have been synthesized and characterized (H(2)bcpt = 3,5-bis(3-carboxyphenyl)-1,2,4-triazole, bib = 1,4-bis(1-imidazoly)benzene). The mixed ligands linked metal ions to form a three dimensional 5-connected net with a rare bnn topology. Ni-MOF had the better degradation efficiency than CoMOF. They were carbonized in tube furnace at 800 degrees C and exhibited better HER activities than glass carbon: Co-MOF-800 with a lower onset potential (-210 mV); Ni-MOF-800 with a smaller Tafel slope (89.87 mV decade(-1)). We studied the HER activities for the mixture prepared from Co-MOF-800 and Ni-MOF-800, which aims to explore the role of metal ion.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Computational Studies of Photocatalysis with Metal-Organic Frameworks
    Wu, Xin-Ping
    Choudhuri, Indrani
    Truhlar, Donald G.
    ENERGY & ENVIRONMENTAL MATERIALS, 2019, 2 (04) : 251 - 263
  • [42] Metal-Organic Frameworks for Photocatalysis and Photothermal Catalysis
    Xiao, Juan-Ding
    Jiang, Hai-Long
    ACCOUNTS OF CHEMICAL RESEARCH, 2019, 52 (02) : 356 - 366
  • [43] Metal-Organic Frameworks for Light Harvesting and Photocatalysis
    Wang, Jin-Liang
    Wang, Cheng
    Lin, Wenbin
    ACS CATALYSIS, 2012, 2 (12): : 2630 - 2640
  • [44] Computational Studies of Photocatalysis with Metal-Organic Frameworks
    Xin-Ping Wu
    Indrani Choudhuri
    Donald G
    能源与环境材料(英文) , 2019, (04) : 251 - 263
  • [45] Metal-Organic Frameworks: Molecules or Semiconductors in Photocatalysis?
    Kolobov, Nikita
    Goesten, Maarten G.
    Gascon, Jorge
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (50) : 26038 - 26052
  • [46] Metal-organic frameworks for artificial photosynthesis and photocatalysis
    Zhang, Teng
    Lin, Wenbin
    CHEMICAL SOCIETY REVIEWS, 2014, 43 (16) : 5982 - 5993
  • [47] Two Cd(II)-Based Metal-Organic Frameworks for Luminescence Sensing of Metal Ions and Organic Molecules
    Zhang Chun-Li
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2019, 35 (01) : 165 - 173
  • [48] Emissive lead(II) benzenedicarboxylate metal-organic frameworks
    Peedikakkal, Abdul Malik P.
    Qamar, Mohammad
    JOURNAL OF CHEMICAL SCIENCES, 2018, 130 (05)
  • [49] Emissive lead(II) benzenedicarboxylate metal-organic frameworks
    Abdul Malik P Peedikakkal
    Mohammad Qamar
    Journal of Chemical Sciences, 2018, 130
  • [50] Polypyrrole/Ni(II) metal-organic frameworks nanocomposites: Fabrication, characterization, and biocompatibility investigations
    Jafarinejad-Farsangi, Saeideh
    Ansari-Asl, Zeinab
    Rostamzadeh, Farzaneh
    Neisi, Zeinab
    MATERIALS TODAY COMMUNICATIONS, 2021, 28