Switching Extended Kalman Filter Bank for Indoor Localization Using Wireless Sensor Networks

被引:6
|
作者
Pak, Jung Min [1 ]
机构
[1] Wonkwang Univ, Dept Elect Engn, Iksan 54538, South Korea
关键词
extended Kalman filter (EKF); indoor localization; switching extended Kalman filter bank (SEKFB); wireless sensor network (WSN);
D O I
10.3390/electronics10060718
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a new filtering algorithm, switching extended Kalman filter bank (SEKFB), for indoor localization using wireless sensor networks. SEKFB overcomes the problem of uncertain process-noise covariance that arises when using the constant-velocity motion model for indoor localization. In the SEKFB algorithm, several extended Kalman filters (EKFs) run in parallel using a set of covariance hypotheses, and the most probable output obtained from the EKFs is selected using Mahalanobis distance evaluation. Simulations demonstrated that the SEKFB can provide accurate and reliable localization without the careful selection of process-noise covariance.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [41] A Localization Algorithm using Space Information for Indoor Wireless Sensor Networks
    Lee, Hojae
    Lee, Sanghoon
    Kim, Yeonsoo
    Chong, Hakjin
    [J]. 11TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY, VOLS I-III, PROCEEDINGS,: UBIQUITOUS ICT CONVERGENCE MAKES LIFE BETTER!, 2009, : 725 - +
  • [42] Indoor localization scheme in wireless sensor networks using spatial information
    Shi Wenming
    Huang Chuanhe
    Shao Mingkai
    Cheng Yong
    Chen Zhe
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-4, 2006, : 1164 - 1168
  • [43] Decentralized target positioning and tracking based on a weighted extended Kalman filter for wireless sensor networks
    Chin-Liang Wang
    Dong-Shing Wu
    [J]. Wireless Networks, 2013, 19 : 1915 - 1931
  • [44] Decentralized target positioning and tracking based on a weighted extended Kalman filter for wireless sensor networks
    Wang, Chin-Liang
    Wu, Dong-Shing
    [J]. WIRELESS NETWORKS, 2013, 19 (08) : 1915 - 1931
  • [45] Target Tracking Using Machine Learning and Kalman Filter in Wireless Sensor Networks
    Mahfouz, Sandy
    Mourad-Chehade, Farah
    Honeine, Paul
    Farah, Joumana
    Snoussi, Hichem
    [J]. IEEE SENSORS JOURNAL, 2014, 14 (10) : 3715 - 3725
  • [46] A Method of Multirate Sensor Fusion for Target Tracking and Localization using Extended Kalman Filter
    Yomchinda, Thanan
    [J]. 2017 FOURTH ASIAN CONFERENCE ON DEFENCE TECHNOLOGY - JAPAN (ACDT), 2017, : 41 - 47
  • [47] Multiple sensor fusion for mobile robot localization and navigation using the Extended Kalman Filter
    Al Khatib, Ehab I.
    Jaradat, Mohammad A.
    Abdel-Hafez, Mamoun
    Roigari, Milad
    [J]. 2015 10TH INTERNATIONAL SYMPOSIUM ON MECHATRONICS AND ITS APPLICATIONS (ISMA), 2015,
  • [48] LOCALIZATION ACCURACY IMPROVEMENT OF AUTONOMOUS VEHICLES USING SENSOR FUSION AND EXTENDED KALMAN FILTER
    Szalay, Istvan
    Enisz, Krisztian
    Medve, Hunor
    Fodor, Denes
    [J]. HUNGARIAN JOURNAL OF INDUSTRY AND CHEMISTRY, 2020, 48 (01): : 109 - 115
  • [49] Vision/UWB/IMU sensor fusion based localization using an extended Kalman filter
    Lee, Yeonsu
    Lim, Dongjin
    [J]. PROCEEDINGS OF THE 2019 IEEE EURASIA CONFERENCE ON IOT, COMMUNICATION AND ENGINEERING (ECICE), 2019, : 401 - 403