H∞ bounds for quasi-Newton adaptive algorithm

被引:0
|
作者
Kalyanasundaram, N. [1 ]
Jindal, Abhishek [1 ]
Gupta, Anindya [1 ]
机构
[1] JIIT Univ, Dept Elect & Commun Engn, Noida 201307, India
关键词
H-infinity norm; Positive definite; Range; Null space; Projection operator; Orthogonal complement; Solvability condition;
D O I
10.1016/j.sigpro.2009.05.007
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The upper and lower bounds for the H-infinity norm of the quasi-Newton (QN) family of adaptive filtering algorithms are obtained. A simulation study of the behaviour of the bounds with respect to the iteration order and the weight-vector dimension for a practical input data model reveals that the QN family is quite robust against modelling errors and errors due to the uncertainty in the initial weight-vector assumption. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2304 / 2309
页数:6
相关论文
共 50 条
  • [31] A Variable Memory Quasi-Newton Training Algorithm
    Seán McLoone
    George Irwin
    [J]. Neural Processing Letters, 1999, 9 : 77 - 89
  • [33] Survey of quasi-Newton equations and quasi-Newton methods for optimization
    Xu, CX
    Zhang, JZ
    [J]. ANNALS OF OPERATIONS RESEARCH, 2001, 103 (1-4) : 213 - 234
  • [34] QUASI-NEWTON MULTIMODULUS BLIND EQUALIZATION ALGORITHM
    Paracha, Kashif N.
    Zerguine, Azzedine
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT 2009), 2009, : 151 - +
  • [35] Distributed adaptive greedy quasi-Newton methods with explicit non-asymptotic convergence bounds
    Du, Yubo
    You, Keyou
    [J]. AUTOMATICA, 2024, 165
  • [36] Robust adaptive quasi-Newton algorithms for eigehsubspace estimation
    Ouyang, S
    Ching, PC
    Lee, T
    [J]. IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 2003, 150 (05): : 321 - 330
  • [37] Nonlinear adaptive analysis via quasi-Newton approach
    Ohtmer, O
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 1999, 30 (9-11) : 595 - 605
  • [38] A new regularized quasi-Newton algorithm for unconstrained optimization
    Zhang, Hao
    Ni, Qin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 460 - 469
  • [39] Quasi-Newton Iterative Projection Algorithm for Sparse Recovery
    Jing, Mingli
    Zhou, Xueqin
    Qi, Chun
    [J]. NEUROCOMPUTING, 2014, 144 : 169 - 173
  • [40] A block Quasi-Newton algorithm implemented in the frequency domain
    Berberidis, K
    Palicot, J
    [J]. 1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 1731 - 1734