Injectable Biodegradable Thermosensitive Hydrogel Composite for Orthopedic Tissue Engineering. 1. Preparation and Characterization of Nanohydroxyapatite/Poly(ethylene glycol)-Poly(ε-caprolactone)-Poly(ethylene glycol) Hydrogel Nanocomposites

被引:80
|
作者
Fu, ShaoZhi [1 ]
Gun, Gang [1 ]
Gong, ChangYang [1 ]
Zeng, Shi [1 ]
Liang, Hang [1 ]
Luo, Feng [1 ]
Zhang, XiaoNing [2 ]
Zhao, Xia [1 ]
Wei, YuQuan [1 ]
Qian, ZhiYong [1 ]
机构
[1] Sichuan Univ, W China Med Sch, W China Hosp, State Key Lab Biotherapy, Chengdu 610041, Peoples R China
[2] Tsinghua Univ, Sch Med, Beijing 100084, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2009年 / 113卷 / 52期
关键词
DRUG-DELIVERY SYSTEM; AQUEOUS-SOLUTIONS; THERMOREVERSIBLE GELATION; MULTIBLOCK COPOLYMERS; NANO HYDROXYAPATITE; TRIBLOCK COPOLYMER; BLOCK-COPOLYMERS; IN-VITRO; CHITOSAN; NANOPARTICLES;
D O I
10.1021/jp907974d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, we synthesized a biodegradable triblock copolymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) by ring-opening copolymerization, and nanohydroxyapatite (n-HA) powder was prepared by a hydrothermal precipitation method. The obtained n-HA was incorporated into the PECE matrix to prepare injectable thermosensitive hydrogel nanocomposites. H-1 NMR, FT-IR, XRD, DSC, and TEM were used to investigate the properties of PECE copolymer and n-HA/PECE nanocomposites. The rheological measurements for n-HA/PECE nanocomposites revealed that the gelation temperature was approximately 36 degrees C. The sol-gel-sol transition behavior and phase transition diagrams were recorded through a test tube inverting method. The results showed that n-HA/PECE nanocomposites still had thermoresponsivity like that of PECE thermosensitive hydrogel. The morphology of the nanocomposites was observed by SEM; the results showed that the nanocomposites had a 3D network structure. In addition, the effects of n-HA contents on the properties of n-HA/PECE nanocomposites are also discussed in the paper. From the results, n-HA/PECE hydrogel is believed to be promising for injectable orthopedic tissue engineering due to its good thermosensitivity and injectability.
引用
收藏
页码:16518 / 16525
页数:8
相关论文
共 50 条
  • [41] Synthesis and characterization of biodegradable elastic hydrogels based on poly(ethylene glycol) and poly(ε-caprolactone) blocks
    Im, Su Jin
    Choi, You Mee
    Subrarnanyarn, Elango
    Huh, Kang Moo
    Park, Kinarn
    MACROMOLECULAR RESEARCH, 2007, 15 (04) : 363 - 369
  • [42] Synthesis and characterization of biodegradable elastic hydrogels based on poly(ethylene glycol) and poly(ε-caprolactone) blocks
    Su Jin Im
    You Mee Choi
    Elango Subramanyam
    Kang Moo Huh
    Kinam Park
    Macromolecular Research, 2007, 15 : 363 - 369
  • [43] Synthesis and characterization of a biodegradable amphiphilic copolymer based on branched poly(ε-caprolactone) and poly(ethylene glycol)
    Zou, Tao
    Li, Song-Lin
    Zhang, Xian-Zheng
    Wu, Xiao-Jun
    Cheng, Si-Xue
    Zhuo, Ren-Xi
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2007, 45 (22) : 5256 - 5265
  • [44] A novel photoscissile poly(ethylene glycol)-based hydrogel
    Zheng, Yujun
    Andreopoulos, Fotios M.
    Micic, Miodrag
    Huo, Qun
    Pham, Si M.
    Leblanc, Roger M.
    Advanced Funtional Materials, 2001, 11 (01): : 37 - 40
  • [45] A novel photoscissile poly(ethylene glycol)-based hydrogel
    Zheng, YJ
    Andreopoulos, FM
    Micic, M
    Huo, Q
    Pham, SM
    Leblanc, RM
    ADVANCED FUNCTIONAL MATERIALS, 2001, 11 (01) : 37 - 40
  • [46] Preparation of biodegradable polylactide-co-poly(ethylene glycol) copolymer by lactide reacted poly(ethylene glycol)
    Zhu, ZX
    Xiong, CD
    Zhang, LL
    Yuan, ML
    Deng, XM
    EUROPEAN POLYMER JOURNAL, 1999, 35 (10) : 1821 - 1828
  • [47] Synthesis and In Vitro Characterization of Poly(Ethylene Glycol)-Albumin Hydrogel Microparticles
    He, Ping
    Jean-Francois, Jacques
    Fortier, Guy
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2012, 23 (12) : 1553 - 1568
  • [48] Biotribological application of poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) hydrogel as an efficient carrier with slow-release lubrication effect
    Junde Guo
    Yue Li
    Yu Li
    Hailin Lu
    Liguo Qin
    Meng Hua
    Guangneng Dong
    Journal of Materials Science, 2017, 52 : 12054 - 12066
  • [49] HEPARIN-POLY(ETHYLENE GLYCOL)-POLY(VINYL ALCOHOL) HYDROGEL - PREPARATION AND ASSESSMENT OF THROMBOGENICITY
    LLANOS, GR
    SEFTON, MV
    BIOMATERIALS, 1992, 13 (07) : 421 - 424
  • [50] Poly(ethylene glycol) immunogenicity in tissue engineering
    Ye, Sunjie
    NATURE REVIEWS BIOENGINEERING, 2024, 2 (05): : 373 - 373