Driver Yawning Detection based on Deep Convolutional Neural Learning and Robust Nose Tracking

被引:0
|
作者
Zhang, Weiwei [1 ]
Murphey, Yi L. [2 ]
Wang, Tianyu [2 ]
Xu, Qijie [2 ]
机构
[1] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China
[2] Univ Michigan, Dept Elect & Comp Engn, Dearborn, MI 48128 USA
关键词
yawning detection; deep convolutional neural networks; gradient statistics; nose tracking; Kalman filter;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Driver yawning detection is one of the key technologies used in driver fatigue monitoring systems. Real-time driver yawning detection is a very challenging problem due to the dynamics in driver's movements and lighting conditions. In this paper, we present a yawning detection system that consists of a face detector, a nose detector, a nose tracker and a yawning detector. Deep learning algorithms are developed for detecting driver face area and nose location. A nose tracking algorithm that combines Kalman filter with a dedicated open-source TLD (Track-Learning-Detection) tracker is developed to generate robust tracking results under dynamic driving conditions. Finally a neural network is developed for yawning detection based on the features including nose tracking confidence value, gradient features around corners of mouth and face motion features. Experiments are conducted on real-world driving data, and results show that the deep convolutional networks can generate a satisfactory classification result for detecting driver's face and nose when compared with other pattern classification methods, and the proposed yawning detection system is effective in real-time detection of driver's yawning states.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] An optimized deep convolutional neural network for dendrobium classification based on electronic nose
    Wang, You
    Diao, Junwei
    Wang, Zhan
    Zhan, Xianghao
    Zhang, Bixuan
    Li, Nan
    Li, Guang
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2020, 307 (307)
  • [32] Fetal Hypoxia Detection Based on Deep Convolutional Neural Network with Transfer Learning Approach
    Comert, Zafer
    Kocamaz, Adnan Fatih
    [J]. SOFTWARE ENGINEERING AND ALGORITHMS IN INTELLIGENT SYSTEMS, 2019, 763 : 239 - 248
  • [33] An improved deep learning convolutional neural network for crack detection based on UAV images
    Omoebamije, Oluwaseun
    Omoniyi, Tope Moses
    Musa, Abdullahi
    Duna, Samson
    [J]. INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2023, 8 (09)
  • [34] An improved deep learning convolutional neural network for crack detection based on UAV images
    Oluwaseun Omoebamije
    Tope Moses Omoniyi
    Abdullahi Musa
    Samson Duna
    [J]. Innovative Infrastructure Solutions, 2023, 8
  • [35] Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks
    Cha, Young-Jin
    Choi, Wooram
    Buyukozturk, Oral
    [J]. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2017, 32 (05) : 361 - 378
  • [36] Intrusion Detection in IoT Systems Based on Deep Learning Using Convolutional Neural Network
    Pham Van Huong
    Le Duc Thuan
    Le Thi Hong Van
    Dang Viet Hung
    [J]. PROCEEDINGS OF 2019 6TH NATIONAL FOUNDATION FOR SCIENCE AND TECHNOLOGY DEVELOPMENT (NAFOSTED) CONFERENCE ON INFORMATION AND COMPUTER SCIENCE (NICS), 2019, : 448 - 453
  • [37] Deep Learning-Based Interference Fringes Detection Using Convolutional Neural Network
    Li, Haowei
    Zhang, Chunxi
    Song, Ningfang
    Li, Huipeng
    [J]. IEEE PHOTONICS JOURNAL, 2019, 11 (04):
  • [38] Cloud Detection and Tracking Based on Object Detection with Convolutional Neural Networks
    Carballo, Jose Antonio
    Bonilla, Javier
    Fernandez-Reche, Jesus
    Nouri, Bijan
    Avila-Marin, Antonio
    Fabel, Yann
    Alarcon-Padilla, Diego-Cesar
    [J]. ALGORITHMS, 2023, 16 (10)
  • [39] Glaucoma Detection based on Deep Convolutional Neural Network
    Chen, Xiangyu
    Xu, Yanwu
    Wong, Damon Wing Kee
    Wong, Tien Yin
    Liu, Jiang
    [J]. 2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 715 - 718
  • [40] Spacecraft Detection Based on Deep Convolutional Neural Network
    Yan, Zhenguo
    Song, Xin
    Zhong, Hanyang
    [J]. 2018 IEEE 3RD INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP), 2018, : 148 - 153