Uncertainty principle and quantum Fisher information

被引:33
|
作者
Gibilisco, Paolo
Isola, Tommaso
机构
[1] Univ Roma Tor Vergata, Fac Econ, Dipartimento SEFEMEQ, I-00133 Rome, Italy
[2] Univ Roma Tor Vergata, Fac Econ, Ctr V Volterra, I-00133 Rome, Italy
[3] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
uncertainty principle; monotone metrics; Quantum Fisher information; Wigner-Yanase-Dyson information;
D O I
10.1007/s10463-006-0103-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A family of inequalities, related to the uncertainty principle, has been recently proved by S. Luo, Z. Zhang, Q. Zhang, H. Kosaki, K. Yanagi, S. Furuichi and K. Kuriyama. We show that the inequalities have a geometric interpretation in terms of quantum Fisher information. Using this formulation one may naturally ask if this family of inequalities can be further extendend, for example to the RLD quantum Fisher information. We show that this is impossible by producing a family of counterexamples.
引用
收藏
页码:147 / 159
页数:13
相关论文
共 50 条