2D PCA for Automatic Segmentation of the Prostate in Ultrasound Images

被引:0
|
作者
Cosio, F. Arambula [1 ]
Fanti, Zian [1 ]
Robles, F. Torres [2 ]
机构
[1] Inst Invest Matemat Aplicadas & Sistemas, Mexico City, DF, Mexico
[2] Ctr Virtual Comp, Mexico City, DF, Mexico
关键词
Prostate Ultrasound; Active Shape Models; 2D Principal Component Analysis;
D O I
10.1117/12.2576149
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Accurate automatic segmentation of the prostate in ultrasound images is still a challenging research problem. In this work, we propose the use of gray level images, constructed with a sample of gray level profiles perpendicular to the contour of the prostate. A two dimensional principal component analysis (2D PCA) was performed on a set of training contour images. The reconstruction error from the 2D PCA was used as an objective function for automatic adjustment of a point distribution model of the prostate. Our method was validated on 9 ultrasound images of the prostate and compared to the optimization of an objective function based on the mean Mahalanobis distance of a sampled gray level profile to the corresponding statistical profile model. Our new method based on a 2D PCA shows improved prostate segmentation results.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images
    Orlando, Nathan
    Gillies, Derek J.
    Gyacskov, Igor
    Romagnoli, Cesare
    D'Souza, David
    Fenster, Aaron
    [J]. MEDICAL PHYSICS, 2020, 47 (06) : 2413 - 2426
  • [42] Multi-atlas-based Automatic 3D Segmentation for Prostate Brachytherapy in Transrectal Ultrasound Images
    Nouranian, Saman
    Mahdavi, S. Sara
    Spadinger, Ingrid
    Morris, William J.
    Salcudean, S. E.
    Abolmaesumi, P.
    [J]. MEDICAL IMAGING 2013: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2013, 8671
  • [43] YSegNet: a novel deep learning network for kidney segmentation in 2D ultrasound images
    Alex, Deepthy Mary
    Chandy, D. Abraham
    Christinal, A. Hepzibah
    Singh, Arvinder
    Pushkaran, M.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (24): : 22405 - 22416
  • [44] YSegNet: a novel deep learning network for kidney segmentation in 2D ultrasound images
    Deepthy Mary Alex
    D. Abraham Chandy
    A. Hepzibah Christinal
    Arvinder Singh
    M. Pushkaran
    [J]. Neural Computing and Applications, 2022, 34 : 22405 - 22416
  • [45] 3D automatic segmentation and reconstruction of prostate on MR images
    Betrouni, Nacim
    Puech, Philippe
    Dewalle, Anne-Sophie
    Lopes, Renaud
    Dubois, Patrick
    Vermandel, Maximilien
    [J]. 2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 5259 - +
  • [46] Color Segmentation of 2D Images with Thresholding
    Christinal, Hepzibah A.
    Diaz-Pernil, Daniel
    Real Jurado, Pedro
    Selvan, S. Easter
    [J]. ECO-FRIENDLY COMPUTING AND COMMUNICATION SYSTEMS, 2012, 305 : 162 - +
  • [47] Automatic segmentation and analysis of trabecular bone from tomographic 2D and 3D images
    Elmoutaouakkil, A
    El Kafi, J
    Peyrin, F
    Laval-Jeantet, AM
    [J]. CARS '99: COMPUTER ASSISTED RADIOLOGY AND SURGERY, 1999, 1191 : 1007 - 1007
  • [48] Prostate boundary segmentation from 3D ultrasound images
    Hu, N
    Downey, DB
    Fenster, A
    Ladak, HM
    [J]. MEDICAL PHYSICS, 2003, 30 (07) : 1648 - 1659
  • [49] Automatic Processing of Ultrasound Images of the Prostate
    Burmaka A.A.
    Razumova K.V.
    Milostnaya N.A.
    Krupchatnikov R.A.
    [J]. Biomedical Engineering, 2016, 50 (3) : 210 - 213
  • [50] Prostate surface segmentation from 3D ultrasound images
    Hu, N
    Downey, DB
    Fenster, A
    Ladak, HM
    [J]. 2002 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, PROCEEDINGS, 2002, : 613 - 616