Blind nonlinear system identification based on LS-SVM

被引:0
|
作者
Zhu, Yanfei [1 ]
Zhang, Yun
Tan, Hongzhou
Li, Zhonghua
机构
[1] Guangdong Univ Tecnol, Coll Automat, Guangzhou 510006, Peoples R China
[2] Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510275, Peoples R China
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A novel blind nonlinear system identification algorithm based on Least-Square Support Vector Machines (LS-SVM) is investigated in this paper. By oversampling the system outputs, more information of the system characteristics can be observed to blindly identify nonlinear systems. The LS-SVM based mathematical approximation provides an adequate modeling of the unknown system given the distribution knowledge of the system inputs. Simulation results demonstrate the effectiveness of this approach.
引用
收藏
页码:658 / 661
页数:4
相关论文
共 50 条
  • [31] A New Modeling Method for Nonlinear Rate-Dependent Hysteresis System Based on LS-SVM
    Lei, Wei
    Mao, Jianqin
    Ma, Yanhua
    [J]. 2008 10TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION: ICARV 2008, VOLS 1-4, 2008, : 1442 - 1446
  • [32] The Research of the AUV Navigation Control System based on the LS-SVM
    Song, Xiaoru
    Cao, Kai
    Gao, Song
    Chen, Chaobo
    Huang, Jiaoru
    [J]. PROCEEDINGS OF 2017 IEEE INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2017, : 40 - 43
  • [33] License Plate Recognition System Based on Morphology and LS-SVM
    Zhao, Haiyan
    Song, Chuyi
    Zhao, Haili
    Zhang, Shizheng
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2008, : 826 - +
  • [34] Weed identification based on features optimization and LS-SVM in the cotton field
    Li, Xianfeng
    Zhu, Weixing
    Ji, Bin
    Liu, Bo
    [J]. Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery, 2010, 41 (11): : 168 - 172
  • [35] Robust Spatiotemporal LS-SVM Modeling for Nonlinear Distributed Parameter System With Disturbance
    Lu, Xinjiang
    Zou, Wei
    Huang, Minghui
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (10) : 8003 - 8012
  • [36] A novel SVD and LS-SVM combination algorithm for blind watermarking
    Zheng, Pan-Pan
    Feng, Jun
    Li, Zhan
    Zhou, Ming-quan
    [J]. NEUROCOMPUTING, 2014, 142 : 520 - 528
  • [37] Fixed-size LS-SVM LPV System Identification for Large Datasets
    Luca Cavanini
    Riccardo Felicetti
    Francesco Ferracuti
    Andrea Monteriù
    [J]. International Journal of Control, Automation and Systems, 2023, 21 : 4067 - 4079
  • [38] Impulse response constrained LS-SVM modelling for MIMO Hammerstein system identification
    Castro-Garcia, Ricardo
    Agudelo, Oscar Mauricio
    Suykens, Johan A. K.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2019, 92 (04) : 908 - 925
  • [39] Identification of a Surface Marine Vessel Using LS-SVM
    Moreno-Salinas, David
    Chaos, Dictino
    Manuel de la Cruz, Jesus
    Aranda, Joaquin
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [40] Comparison of SVM and LS-SVM for regression
    Wang, HF
    Hu, DJ
    [J]. PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND BRAIN, VOLS 1-3, 2005, : 279 - 283