An UWB/PDR Fusion Algorithm Based on Improved Square Root Unscented Kalman Filter

被引:0
|
作者
Liu, Yuan [1 ]
Li, Sheng [1 ]
Sun, Qiang [1 ]
Chang, Chenfei [2 ]
He, Guangjian [3 ]
Kang, Xiao [4 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Peoples R China
[2] Northern Res Inst NJUST, Tianjin 300220, Peoples R China
[3] Guangzhou Metro Grp Co Ltd, Guangzhou 510220, Peoples R China
[4] China North Vehicle Res Inst, Res & Dev Ctr, Beijing 100072, Peoples R China
关键词
indoor positioning; UWB technology; Pedestrian Dead Reckoning; improved square root unscented Kalman filter algorithm;
D O I
10.23919/chicc.2019.8866374
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
How to improve the accuracy of indoor positioning is a hot issue in the research of wireless indoor positioning technology. In order to solve the problem that Ultra Wideband (UWB) technology cannot locate accurately under the condition of non-line of sight (NLOS), this paper proposes an indoor positioning method combining UWB and Pedestrian Dead Reckoning (PDR).The method utilizes the advantages of high frequency noise characteristics of PDR to suppress the NLOS error generated by UWB. Furthermore, in order to get better integration of UWB and PDR, an improved square root unscented Kalman filter (ISR-UKF) is proposed. The simulation results show that the improved algorithm proposed in this paper can effectively improve the indoor positioning accuracy, and ensure the stability and continuity of the positioning system.
引用
收藏
页码:4124 / 4129
页数:6
相关论文
共 50 条
  • [21] Square-root unscented Kalman filter for vehicle integrated navigation
    Chen, Yang-Zhou
    Sun, Zhang-Gu
    Ma, Hai-Bo
    [J]. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2008, 30 (05): : 926 - 928
  • [22] IBeacon/INS Data Fusion Location Algorithm Based on Unscented Kalman Filter
    Wang Shouhua
    Lu Mingehi
    Sun Xiyan
    Ji Yuanfa
    Hu Dingmei
    [J]. JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2019, 41 (09) : 2209 - 2216
  • [23] An Improved PDR/Magnetometer/Floor Map Integration Algorithm for Ubiquitous Positioning Using the Adaptive Unscented Kalman Filter
    Wang, Jian
    Hu, Andong
    Li, Xin
    Wang, Yan
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2015, 4 (04): : 2638 - 2659
  • [24] Data Fusion of UWB and IMU Based on Unscented Kalman Filter for Indoor Localization of Quadrotor UAV
    You, Weide
    Li, Fanbiao
    Liao, Liqing
    Huang, Meili
    [J]. IEEE ACCESS, 2020, 8 : 64971 - 64981
  • [25] A Study on Coaxial Quadrotor Model Parameter Estimation: an Application of the Improved Square Root Unscented Kalman Filter
    Goslinski, Jaroslaw
    Kasinski, Andrzej
    Giernacki, Wojciech
    Owczarek, Piotr
    Gardecki, Stanislaw
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2019, 95 (02) : 491 - 510
  • [26] Estimation of side-slip angle of electric vehicle based on square-root unscented Kalman filter algorithm
    Tian, Yan-Tao
    Zhang, Yu
    Wang, Xiao-Yu
    Chen, Hua
    [J]. Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2018, 48 (03): : 845 - 852
  • [27] A Study on Coaxial Quadrotor Model Parameter Estimation: an Application of the Improved Square Root Unscented Kalman Filter
    Jarosław Gośliński
    Andrzej Kasiński
    Wojciech Giernacki
    Piotr Owczarek
    Stanisław Gardecki
    [J]. Journal of Intelligent & Robotic Systems, 2019, 95 : 491 - 510
  • [28] An Improved Location Algorithm by Extend Square-root Cubature Kalman Filter
    Sheng, Ruiguo
    Zhang, Yang
    Miao, Jun
    [J]. JOURNAL OF COMPUTERS, 2013, 8 (02) : 471 - 477
  • [29] UWB/Binocular VO Fusion Algorithm Based on Adaptive Kalman Filter
    Zeng, Qingxi
    Liu, Dehui
    Lv, Chade
    [J]. SENSORS, 2019, 19 (18)
  • [30] An Improved Unscented Kalman Filter Algorithm for Radar Azimuth Mutation
    You, Dazhang
    Liu, Pan
    Shang, Wei
    Zhang, Yepeng
    Kang, Yawei
    Xiong, Jun
    [J]. INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2020, 2020