Theoretical study of anisotropic MHD turbulence with low magnetic Reynolds number

被引:6
|
作者
Sukoriansky, Semion [1 ,2 ]
Zemach, Efi [1 ]
机构
[1] Ben Gurion Univ Negev, IL-84105 Beer Sheva, Israel
[2] Perlstone Ctr Aeronaut Engn Studies, Beer Sheva, Israel
基金
美国国家科学基金会;
关键词
MHD turbulence; Reynolds number; anisotropic turbulence; LIQUID-METAL BLANKETS; MAGNETOHYDRODYNAMIC TURBULENCE; EDDY VISCOSITY; FLOWS; DIMENSIONS; SIMULATION; MODEL;
D O I
10.1088/0031-8949/91/3/034001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Flows of electrically conducting fluids under the action of external magnetic field present an example of strongly anisotropic turbulence. Such flows are not only important for different engineering applications, but also provide an interesting framework for studies of quasi-two-dimensional turbulence with strongly modified transport properties in easily controllable laboratory experiments. We present theoretical results that advance our understanding of magnetohydrodynamic (MHD) flows with low magnetic Reynolds number by treating this phenomenon within the quasi-normal scale elimination (QNSE) theory. Previous applications of the theory to turbulent flows with stable stratification and solid body rotation have demonstrated that QNSE is a powerful tool for studies of anisotropic turbulent flows. We derive expressions for scale-dependent eddy viscosities and eddy diffusivities in the directions parallel and normal to the external magnetic field and investigate progressive anisotropization of turbulent transport of momentum and passive scalar. The theory yields analytical expressions for anisotropic one-dimensional spectra of MHD turbulence. In particular, the theory sheds light upon the modification of the Kolmogorov k(-5/3) spectrum by anisotropic Ohmic (Joule) dissipation.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] On the generation of free-stream turbulence at low Reynolds number: A numerical study
    Catalan, J. M.
    Olivieri, S.
    Garcia-Villalba, M.
    Flores, O.
    [J]. COMPUTERS & FLUIDS, 2024, 280
  • [42] PREDICTION OF ANISOTROPY OF THE NEAR-WALL TURBULENCE WITH AN ANISOTROPIC LOW-REYNOLDS-NUMBER K-EPSILON TURBULENCE MODEL
    MYONG, HK
    KASAGI, N
    [J]. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 1990, 112 (04): : 521 - 524
  • [43] Dispersed-phase structural anisotropy in homogeneous magnetohydrodynamic turbulence at low magnetic Reynolds number
    Rouson, D. W. I.
    Kassinos, S. C.
    Moulitsas, I.
    Sarris, I. E.
    Xu, X.
    [J]. PHYSICS OF FLUIDS, 2008, 20 (02)
  • [44] On the effect of rotation on magnetohydrodynamic turbulence at high magnetic Reynolds number
    Favier, B. F. N.
    Godeferd, F. S.
    Cambon, C.
    [J]. GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2012, 106 (01): : 89 - 111
  • [45] Numerical study of MHD Taylor vortex flow with low magnetic Reynolds number in finite-length annulus under uniform magnetic field
    Leng, Xue-Yuan
    Yu, Yang
    Li, Ben-Wen
    [J]. COMPUTERS & FLUIDS, 2014, 105 : 16 - 27
  • [46] MHD TURBULENCE IN ACCRETION DISKS: THE IMPORTANCE OF THE MAGNETIC PRANDTL NUMBER
    Fromang, S.
    Papaloizou, J.
    Lesur, G.
    Heinemann, T.
    [J]. PHYSICS AND ASTROPHYSICS OF PLANETARY SYSTEMS, 2010, 41 : 167 - +
  • [47] MHD TAYLOR-COUETTE FLOW WITH INSULATING WALLS AT PERIODIC CONDITION AND LOW MAGNETIC REYNOLDS NUMBER
    Leng, X. Y.
    Kolesnikov, Yu B.
    Krasnov, D.
    Li, B. W.
    [J]. MAGNETOHYDRODYNAMICS, 2020, 56 (2-3): : 103 - 111
  • [48] On the limits of validity of the low magnetic Reynolds number approximation in MHD natural-convection heat transfer
    Sarris, I. E.
    Zikos, G. K.
    Grecos, A. P.
    Vlachos, N. S.
    [J]. NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2006, 50 (02) : 157 - 180
  • [49] An efficient, partitioned ensemble algorithm for simulating ensembles of evolutionary MHD flows at low magnetic Reynolds number
    Jiang, Nan
    Schneier, Michael
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (06) : 2129 - 2152
  • [50] MHD WAKE AROUND A CYLINDER FOR DIFFERENT VALUES OF THE MAGNETIC REYNOLDS NUMBER
    Collu, S. M.
    Alemany, A.
    Montisci, A.
    [J]. MAGNETOHYDRODYNAMICS, 2022, 58 (04): : 533 - 544