Multimodal sentiment analysis based on multi-head attention mechanism

被引:41
|
作者
Xi, Chen [1 ]
Lu, Guanming [1 ]
Yan, Jingjie [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Feature extraction; Multimodal sentiment analysis; Multi-head attention mechanism; FUSION;
D O I
10.1145/3380688.3380693
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multimodal sentiment analysis is still a promising area of research, which has many issues needed to be addressed. Among them, extracting reasonable unimodal features and designing a robust multimodal sentiment analysis model is the most basic problem. This paper presents some novel ways of extracting sentiment features from visual, audio and text, furthermore use these features to verify the multimodal sentiment analysis model based on multi-head attention mechanism. The proposed model is evaluated on Multimodal Opinion Utterances Dataset (MOUD) corpus and CMU Multi-modal Opinion-level Sentiment Intensity (CMU-MOSI) corpus for multimodal sentiment analysis. Experimental results prove the effectiveness of the proposed approach. The accuracy of the MOUD and MOSI datasets is 90.43% and 82.71%, respectively. Compared to the state-of-the-art models, the improvement of the performance are approximately 2 and 0.4 points.
引用
收藏
页码:34 / 39
页数:6
相关论文
共 50 条
  • [1] Bimodal Fusion Network with Multi-Head Attention for Multimodal Sentiment Analysis
    Zhang, Rui
    Xue, Chengrong
    Qi, Qingfu
    Lin, Liyuan
    Zhang, Jing
    Zhang, Lun
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [2] Short Text Sentiment Analysis Based on Multi-Channel CNN With Multi-Head Attention Mechanism
    Feng, Yue
    Cheng, Yan
    [J]. IEEE ACCESS, 2021, 9 : 19854 - 19863
  • [3] Sentiment Analysis of Text Based on Bidirectional LSTM With Multi-Head Attention
    Long, Fei
    Zhou, Kai
    Ou, Weihua
    [J]. IEEE ACCESS, 2019, 7 : 141960 - 141969
  • [4] Targeted Aspect-Based Multimodal Sentiment Analysis: An Attention Capsule Extraction and Multi-Head Fusion Network
    Gu, Donghong
    Wang, Jiaqian
    Cai, Shaohua
    Yang, Chi
    Song, Zhengxin
    Zhao, Haoliang
    Xiao, Luwei
    Wang, Hua
    [J]. IEEE ACCESS, 2021, 9 : 157329 - 157336
  • [5] Sentiment Analysis with An Integrated Model of BERT and Bi-LSTM Based on Multi-Head Attention Mechanism
    Wang, Yahui
    Cheng, Xiaoqing
    Meng, Xuelei
    [J]. IAENG International Journal of Computer Science, 2023, 50 (01)
  • [6] Multi-head attention model for aspect level sentiment analysis
    Zhang, Xinsheng
    Gao, Teng
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (01) : 89 - 96
  • [7] Deep Multi-Head Attention Network for Aspect-Based Sentiment Analysis
    Yan, Danfeng
    Chen, Jiyuan
    Cui, Jianfei
    Shan, Ao
    Shi, Wenting
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 695 - 700
  • [8] Memory network with hierarchical multi-head attention for aspect-based sentiment analysis
    Chen, Yuzhong
    Zhuang, Tianhao
    Guo, Kun
    [J]. APPLIED INTELLIGENCE, 2021, 51 (07) : 4287 - 4304
  • [9] Memory network with hierarchical multi-head attention for aspect-based sentiment analysis
    Yuzhong Chen
    Tianhao Zhuang
    Kun Guo
    [J]. Applied Intelligence, 2021, 51 : 4287 - 4304
  • [10] Emotion-Semantic-Enhanced Bidirectional LSTM with Multi-Head Attention Mechanism for Microblog Sentiment Analysis
    Wang, Shaoxiu
    Zhu, Yonghua
    Gao, Wenjing
    Cao, Meng
    Li, Mengyao
    [J]. INFORMATION, 2020, 11 (05)