Multi-head attention model for aspect level sentiment analysis

被引:8
|
作者
Zhang, Xinsheng [1 ]
Gao, Teng [1 ]
机构
[1] Xian Univ Architecture & Technol, Sch Management, Xian, Shaanxi, Peoples R China
关键词
Text sentiment classification; fine-grained sentiment analysis; attention mechanism;
D O I
10.3233/JIFS-179383
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aspect level sentiment classification task requires topical polarity classification for different description aspect. There is a polysemy in the same vocabulary, and the emotional polarity is different for different objects. Word embedding can capture semantic information but cannot adapt to the polysemy. Attention mechanism has achieved good performance in the above tasks; however, it is only able to get the degree of association between words and unable to get detailed descriptions. In this paper, the ELMOs model is used to adjust the polysemy of the word. The Transformer model is used to extract the features with the highest degree of relevance to the target object for emotional polarity classification. Our work contribution is to overcome the polysemy interference, and use the attention mechanism to model the network relationship between words, so that the model can extract important classification features according to different target words. Experiments on laptop and restaurant datasets demonstrate that our approach achieves a new state-of-the-art performance on a few benchmarks.
引用
收藏
页码:89 / 96
页数:8
相关论文
共 50 条
  • [1] Interactive Multi-Head Attention Networks for Aspect-Level Sentiment Classification
    Zhang, Qiuyue
    Lu, Ran
    Wang, Qicai
    Zhu, Zhenfang
    Liu, Peiyu
    [J]. IEEE ACCESS, 2019, 7 : 160017 - 160028
  • [2] Deep Multi-Head Attention Network for Aspect-Based Sentiment Analysis
    Yan, Danfeng
    Chen, Jiyuan
    Cui, Jianfei
    Shan, Ao
    Shi, Wenting
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 695 - 700
  • [3] Graph convolutional networks with hierarchical multi-head attention for aspect-level sentiment classification
    Xiaowen Li
    Ran Lu
    Peiyu Liu
    Zhenfang Zhu
    [J]. The Journal of Supercomputing, 2022, 78 : 14846 - 14865
  • [4] Graph convolutional networks with hierarchical multi-head attention for aspect-level sentiment classification
    Li, Xiaowen
    Lu, Ran
    Liu, Peiyu
    Zhu, Zhenfang
    [J]. JOURNAL OF SUPERCOMPUTING, 2022, 78 (13): : 14846 - 14865
  • [5] Filter gate network based on multi-head attention for aspect-level sentiment classification
    Zhou, Ziyu
    Liu, Fang'ai
    [J]. NEUROCOMPUTING, 2021, 441 (441) : 214 - 225
  • [6] Memory network with hierarchical multi-head attention for aspect-based sentiment analysis
    Chen, Yuzhong
    Zhuang, Tianhao
    Guo, Kun
    [J]. APPLIED INTELLIGENCE, 2021, 51 (07) : 4287 - 4304
  • [7] Memory network with hierarchical multi-head attention for aspect-based sentiment analysis
    Yuzhong Chen
    Tianhao Zhuang
    Kun Guo
    [J]. Applied Intelligence, 2021, 51 : 4287 - 4304
  • [8] An interactive multi-head self-attention capsule network model for aspect sentiment classification
    Lina She
    Hongfang Gong
    Siyu Zhang
    [J]. The Journal of Supercomputing, 2024, 80 : 9327 - 9352
  • [9] An interactive multi-head self-attention capsule network model for aspect sentiment classification
    She, Lina
    Gong, Hongfang
    Zhang, Siyu
    [J]. JOURNAL OF SUPERCOMPUTING, 2024, 80 (07): : 9327 - 9352
  • [10] Multi-Head Self-Attention Transformation Networks for Aspect-Based Sentiment Analysis
    Lin, Yuming
    Wang, Chaoqiang
    Song, Hao
    Li, You
    [J]. IEEE ACCESS, 2021, 9 : 8762 - 8770