A satellite remote sensing based marine and atmospheric spatio-temporal data model

被引:2
|
作者
Fang Chaoyang [1 ]
Hui, Lin [1 ]
Guilbert, Eric [1 ]
Ge, Chen [2 ]
机构
[1] CUHK, Inst Space & Earth Informat Sci, Shatin, Hong Kong, Peoples R China
[2] Ocean Univ Qingdao, Inst Ocean Remote Sensing, Qingdao 266003, Peoples R China
关键词
spatio-temporal data model; ocean and atmosphere; satellite remote sensing; high-dimensional dynamic environment;
D O I
10.1117/12.712678
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, a marine and atmospheric spatio-temporal data model (MASTDM) based on satellite remote sensing has been developed to support the global oceanic and atmospheric research and application in the Marine and Atmospheric Geographical Information System (MAGIS). MASTDM conceptualizes the spatial distribution and temporal sampling of the satellite remote sensing data. The model has provided a mechanism service to store data and some subroutines to retrieve and manipulate data. These subroutines can be classified into the fundamental functions (definition, access, inquiry, export) and the advanced functions (transform, operation, validation and mend and etc). MASTDM is not only a solid foundation of the three modules (database management, spatial-temporal analysis and visualization) of MAGIS, but also a key to integrate these three modules seamlessly. In this paper, the conceptual and logical designs of MASTDM have been presented. A prototype system based on MASTDM has been implemented in MAGIS, it is also illustrated by some case study.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Spatio-Temporal Dynamics Assessment of Coastlines Based on Remote Sensing Data
    Otinar, Pedro
    Silva, Marcus
    Cobos, Manuel
    Magana, Pedro
    Baquerizo, Asuncion
    [J]. PROCEEDINGS OF THE 39TH IAHR WORLD CONGRESS, 2022, : 5917 - 5925
  • [2] Effective spatio-temporal analysis of remote sensing data
    Zhang, Zhongnan
    Wu, Weili
    Huang, Yaochun
    [J]. PROGRESS IN WWW RESEARCH AND DEVELOPMENT, PROCEEDINGS, 2008, 4976 : 584 - 589
  • [3] Spatio-temporal Distribution of Internal Waves in the Andaman Sea Based on Satellite Remote Sensing
    Zhou, Liying
    Yang, Jingsong
    Wang, Juan
    He, Shuangyan
    He, Zhiguo
    Liu, Antony K.
    Hsu, Ming-Kuang
    [J]. 2016 9TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2016), 2016, : 624 - 628
  • [4] Spatio-temporal Variations of Tropospheric Nitrogen Dioxide in Turkey Based on Satellite Remote Sensing
    Yavasli, Dogukan Dogu
    [J]. GEOGRAPHICA PANNONICA, 2020, 24 (03): : 168 - 175
  • [5] A FLEXIBLE APPROACH FOR SPATIO-TEMPORAL REMOTE SENSING DATA ANALYSIS
    Gens, Rudiger
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4962 - 4964
  • [6] Predicting Missing Values in Spatio-Temporal Remote Sensing Data
    Gerber, Florian
    de Jong, Rogier
    Schaepman, Michael E.
    Schaepman-Strub, Gabriela
    Furrer, Reinhard
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (05): : 2841 - 2853
  • [7] Spatio-temporal evaluation of remote sensing rainfall data of TRMM satellite over the Kingdom of Saudi Arabia
    Hussain, Sajjad
    Elfeki, Amro M.
    Chaabani, Anis
    Yibrie, Esubalew Adem
    Elhag, Mohamed
    [J]. THEORETICAL AND APPLIED CLIMATOLOGY, 2022, 150 (1-2) : 363 - 377
  • [8] Spatio-temporal evaluation of remote sensing rainfall data of TRMM satellite over the Kingdom of Saudi Arabia
    Sajjad Hussain
    Amro M. Elfeki
    Anis Chaabani
    Esubalew Adem Yibrie
    Mohamed Elhag
    [J]. Theoretical and Applied Climatology, 2022, 150 : 363 - 377
  • [9] Spatio-temporal fusion for remote sensing data: an overview and new benchmark
    Li, Jun
    Li, Yunfei
    He, Lin
    Chen, Jin
    Plaza, Antonio
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (04)
  • [10] Spatio-temporal fusion for remote sensing data: an overview and new benchmark
    Jun Li
    Yunfei Li
    Lin He
    Jin Chen
    Antonio Plaza
    [J]. Science China Information Sciences, 2020, 63