Coloring and the Lovasz Local Lemma

被引:3
|
作者
Chen, Xing [1 ]
Du, Zhihua [2 ]
Meng, Jixiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
[2] Xinjiang Normal Univ, Dept Math & Informat Sci, Urumqi 830054, Xinjiang, Peoples R China
关键词
Lovasz Local Lemma; Lopsidependency graph; t-coloring;
D O I
10.1016/j.aml.2009.02.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lovasz Local Lemma yields sufficient conditions for a hypergraph to be 2-colorable, that is, to have a coloring of the points blue or red such that no edge is monochromatic. The method yields a general theorem, which shows for example, if H is a hypergraph in which each edge contains at least 9 points and each point is contained in at most 11 edges, then H is 2-colorable. In this paper, we use the 'lopsided' version of the Local Lemma to give some sufficient conditions on t-coloring to hypergraphs and 2-coloring to hypergraphs such that each edge contains at least 2 points of each color. (C) 2009 Published by Elsevier Ltd
引用
收藏
页码:219 / 221
页数:3
相关论文
共 50 条
  • [31] Uniform Sampling through the Lovasz Local Lemma
    Guo, Heng
    Jerrum, Mark
    Liu, Jingcheng
    [J]. STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, : 342 - 355
  • [32] Simple Local Computation Algorithms for the General Lovasz Local Lemma
    Achlioptas, Dimitris
    Gouleakis, Themis
    Iliopoulos, Fotis
    [J]. PROCEEDINGS OF THE 32ND ACM SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES (SPAA '20), 2020, : 1 - 10
  • [33] AN ALGORITHMIC APPROACH TO THE LOVASZ LOCAL LEMMA .1.
    BECK, J
    [J]. RANDOM STRUCTURES & ALGORITHMS, 1991, 2 (04) : 343 - 365
  • [34] A CONSTRUCTIVE QUANTUM LOVASZ LOCAL LEMMA FOR COMMUTING PROJECTORS
    Sattath, Or
    Arad, Itai
    [J]. QUANTUM INFORMATION & COMPUTATION, 2015, 15 (11-12) : 987 - 996
  • [35] A Kolmogorov complexity proof of the Lovasz Local Lemma for satisfiability
    Messner, Jochen
    Thierauf, Thomas
    [J]. THEORETICAL COMPUTER SCIENCE, 2012, 461 : 55 - 64
  • [36] Constraint Satisfaction, Packet Routing, and the Lovasz Local Lemma
    Harris, David G.
    Srinivasan, Aravind
    [J]. STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2013, : 685 - 694
  • [37] Distributed algorithms, the Lovasz Local Lemma, and descriptive combinatorics
    Bernshteyn, Anton
    [J]. INVENTIONES MATHEMATICAE, 2023, 233 (02) : 495 - 542
  • [38] An Improvement of the Lovasz Local Lemma via Cluster Expansion
    Bissacot, Rodrigo
    Fernandez, Roberto
    Procacci, Aldo
    Scoppola, Benedetto
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (05): : 709 - 719
  • [39] Kolmogorov complexity, lovasz local lemma and critical exponents
    Rumyantsev, Andrey Yu.
    [J]. Computer Science - Theory and Applications, 2007, 4649 : 349 - 355
  • [40] Using Lovasz Local Lemma in the space of random injections
    Lu, Linyuan
    Szekely, Laszlo
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):