A non-negative approximate Wigner distribution with accurate low-order moments

被引:0
|
作者
Georgopoulos, VC
Preis, D
机构
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper a procedure to compute a non-negative time-frequency distribution that yields the total energy of the analytic signal and satisfies the zero-and first-order moments of its Wigner distribution is developed. These moments are the instantaneous power (or envelope squared), the energy spectrum, the instantaneous frequency moment, and the group delay moment. The distribution is computed by using a neural network form, iterative algorithm and does not have interference terms.
引用
收藏
页码:769 / 772
页数:4
相关论文
共 50 条
  • [1] Pion distribution functions from low-order Mellin moments
    Lu, Ya
    Xu, Yin-Zhen
    Raya, Khepani
    Roberts, Craig D.
    Rodriguez-Quintero, Jose
    [J]. PHYSICS LETTERS B, 2024, 850
  • [2] MOMENTS OF NON-NEGATIVE MASS
    ROGOSINSKI, WW
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1958, 245 (1240): : 1 - 27
  • [3] A STATISTICAL APPROACH TO SEMI-SUPERVISED SPEECH ENHANCEMENT WITH LOW-ORDER NON-NEGATIVE MATRIX FACTORIZATION
    Mohammed, Shoaib
    Tashev, Ivan
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 546 - 550
  • [4] Wigner non-negative states that verify the Wigner entropy conjecture
    Qian, Qipeng
    Gagatsos, Christos N.
    [J]. PHYSICAL REVIEW A, 2024, 110 (01)
  • [5] Non-negative Wigner functions in prime dimensions
    Gross, D.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2007, 86 (03): : 367 - 370
  • [6] Non-negative Wigner functions in prime dimensions
    D. Gross
    [J]. Applied Physics B, 2007, 86 : 367 - 370
  • [7] Non-Gaussian behavior of low-order moments in fully developed turbulence
    Vainshtein, SI
    [J]. PHYSICAL REVIEW E, 1997, 56 (01): : 447 - 461
  • [8] Non-negative Wigner functions for orbital angular momentum states
    Rigas, I.
    Sanchez-Soto, L. L.
    Klimov, A. B.
    Rehacek, J.
    Hradil, Z.
    [J]. PHYSICAL REVIEW A, 2010, 81 (01)
  • [9] Bell's inequality violation with non-negative Wigner functions
    Revzen, M
    Mello, PA
    Mann, A
    Johansen, LM
    [J]. PHYSICAL REVIEW A, 2005, 71 (02):
  • [10] LOW RANK NON-NEGATIVE TRIPLE DECOMPOSITION AND NON-NEGATIVE TENSOR COMPLETION
    Wang, Chunyan
    Wang, Min
    Chen, Haibin
    Wang, Yiju
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2021, 17 (03): : 453 - 466