Non-negative Wigner functions in prime dimensions

被引:35
|
作者
Gross, D. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2BW, England
[2] Univ London Imperial Coll Sci Technol & Med, QOLS, Blackett Lab, London SW7 2BW, England
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2007年 / 86卷 / 03期
关键词
D O I
10.1007/s00340-006-2510-9
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
According to a classical result due to Hudson, the Wigner function of a pure, continuous-variable quantum state is non-negative if and only if the state is Gaussian. We have proven an analogous statement for finite-dimensional quantum systems. In this context, the role of Gaussian states is taken on by stabilizer states. The general results have been published in [1]. For the case of systems of odd prime dimension, a different, greatly simplified method of proof can be employed which still exhibits the main ideas. The present paper gives a self-contained account of these methods.
引用
收藏
页码:367 / 370
页数:4
相关论文
共 50 条
  • [1] Non-negative Wigner functions in prime dimensions
    D. Gross
    [J]. Applied Physics B, 2007, 86 : 367 - 370
  • [2] Non-negative Wigner functions for orbital angular momentum states
    Rigas, I.
    Sanchez-Soto, L. L.
    Klimov, A. B.
    Rehacek, J.
    Hradil, Z.
    [J]. PHYSICAL REVIEW A, 2010, 81 (01)
  • [3] Bell's inequality violation with non-negative Wigner functions
    Revzen, M
    Mello, PA
    Mann, A
    Johansen, LM
    [J]. PHYSICAL REVIEW A, 2005, 71 (02):
  • [4] Wigner non-negative states that verify the Wigner entropy conjecture
    Qian, Qipeng
    Gagatsos, Christos N.
    [J]. PHYSICAL REVIEW A, 2024, 110 (01)
  • [5] ON SUBHARMONICITY OF NON-NEGATIVE FUNCTIONS
    KURAN, U
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1965, 40 (157P): : 41 - &
  • [7] NON-NEGATIVE HEAT FUNCTIONS ON A RECTANGLE
    BEAR, HS
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 1985, 11 (02): : 159 - 170
  • [8] Bounds for a class of quasilinear integral operators on the set of non-negative and non-negative monotone functions
    Kalybay, A. A.
    Oinarov, R.
    [J]. IZVESTIYA MATHEMATICS, 2019, 83 (02) : 251 - 272
  • [9] Non-parametric Models for Non-negative Functions
    Marteau-Ferey, Ulysse
    Bach, Francis
    Rudi, Alessandro
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [10] On the global integrability of non-negative harmonic functions
    El Mabrouk, K
    [J]. POTENTIAL ANALYSIS, 2005, 22 (02) : 171 - 181