SAMPLING, FEASIBILITY, AND PRIORS IN BAYESIAN ESTIMATION

被引:8
|
作者
Chorin, Alexandre J. [1 ,2 ]
Lu, Fei [1 ,2 ]
Miller, Robert N. [3 ]
Morzfeld, Matthias [4 ]
Tu, Xuemin [5 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[3] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA
[4] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[5] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
Monte Carlo; data assimilation; model reduction; Bayesian estimation; DATA ASSIMILATION; PARTICLE FILTERS; PARAMETER-ESTIMATION;
D O I
10.3934/dcds.2016.8.4227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Importance sampling algorithms are discussed in detail, with an emphasis on implicit sampling, and applied to data assimilation via particle filters. Implicit sampling makes it possible to use the data to find high-probability samples at relatively low cost, making the assimilation more efficient. A new analysis of the feasibility of data assimilation is presented, showing in detail why feasibility depends on the Frobenius norm of the covariance matrix of the noise and not on the number of variables. A discussion of the convergence of particular particle filters follows. A major open problem in numerical data assimilation is the determination of appropriate priors; a progress report on recent work on this problem is given. The analysis highlights the need for a careful attention both to the data and to the physics in data assimilation problems.
引用
收藏
页码:4227 / 4246
页数:20
相关论文
共 50 条
  • [1] A cautionary note on Bayesian estimation of population size by removal sampling with diffuse priors
    Bord, Severine
    Bioche, Christele
    Druilhet, Pierre
    [J]. BIOMETRICAL JOURNAL, 2018, 60 (03) : 450 - 462
  • [2] Influence of priors in Bayesian estimation of genetic parameters for multivariate threshold models using Gibbs sampling
    Stock, Kathrin Friederike
    Distl, Ottmar
    Hoeschele, Ina
    [J]. GENETICS SELECTION EVOLUTION, 2007, 39 (02) : 123 - 137
  • [3] Influence of priors in Bayesian estimation of genetic parameters for multivariate threshold models using Gibbs sampling
    Kathrin Friederike Stock
    Ottmar Distl
    Ina Hoeschele
    [J]. Genetics Selection Evolution, 39 (2)
  • [4] An Investigation of Likelihoods and Priors for Bayesian Endmember Estimation
    Zare, Alina
    Gader, Paul
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2010, 1305 : 311 - 318
  • [5] Assumed and effective priors in Bayesian MAP estimation
    Nikolova, M
    [J]. 2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 305 - 308
  • [6] Bayesian Diffusion Tensor Estimation with Spatial Priors
    Gu, Xuan
    Siden, Per
    Wegmann, Bertil
    Eklund, Anders
    Villani, Mattias
    Knutsson, Hans
    [J]. COMPUTER ANALYSIS OF IMAGES AND PATTERNS, 2017, 10424 : 372 - 383
  • [7] On Default Priors for Robust Bayesian Estimation with Divergences
    Nakagawa, Tomoyuki
    Hashimoto, Shintaro
    [J]. ENTROPY, 2021, 23 (01) : 1 - 19
  • [8] BAYESIAN SAMPLING ESTIMATION OF MIXTURES
    DIEBOLT, J
    ROBERT, C
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 311 (10): : 653 - 658
  • [9] Efficient Bayesian estimation of permutation entropy with Dirichlet priors
    Little, Douglas J.
    Toomey, Joshua P.
    Kane, Deb M.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 108
  • [10] Bayesian-based motion estimation with flat priors
    Keren, D
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2004, 735 : 153 - 160