Nitrogen-Doped Carbon Nanotubes Supported by Macroporous Carbon as an Efficient Enzymatic Biosensing Platform for Glucose

被引:84
|
作者
Song, Yonghai [1 ]
Lu, Xingping [1 ]
Li, Yi [1 ]
Guo, Qiaohui [1 ]
Chen, Shuiliang [1 ]
Mao, Lanqun [2 ]
Hou, Haoqing [1 ]
Wang, Li [1 ]
机构
[1] Jiangxi Normal Univ, Coll Chem & Chem Engn, Key Lab Funct Small Organ Mol, Minist Educ,Key Lab Chem Biol, Nanchang 330022, Jiangxi Provinc, Peoples R China
[2] Chinese Acad Sci, Inst Chem, Key Lab Analyt Chem Living Biosyst, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
OXYGEN REDUCTION REACTION; HIGH ELECTROCATALYTIC ACTIVITY; DIRECT ELECTROCHEMISTRY; HYDROGEN-PEROXIDE; MODIFIED ELECTRODE; OXIDASE; GRAPHENE; NANOSHEETS; COMPOSITE; ARRAYS;
D O I
10.1021/acs.analchem.5b03938
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Effective immobilization of enzymes/proteins on an electrode surface is very essential for biosensor development, but it still remains challenging because enzymes/proteins tend to form close-packed structures on the electrode surface. In this work, nitrogen-doped carbon nanotubes (NCNTs) supported by three-dimensional Kenaf Stem-derived porous carbon (3D-KSC) (denoted as 3D-KSC/NCNTs) nanocomposites were constructed as the supporting matrix to load glucose oxidase (GOD) for preparing integrated glucose biosensors. These NCNTs are vertically arrayed on the channel walls of the 3D-KSC via the chemical vapor deposition method, which could noticeably increase the effective surface area, mechanical stability, and active sites (originating from the doped nitrogen) of the nanocomposites. The integrated glucose biosensor exhibits some advantages over the traditional GOD electrodes in terms of the capability to promote the direct electron transfer of GOD, enhance the mechanical stability of the biosensor attributed to the strong interaction between NCNTs and GOD, and enlarge the specific surface area to efficiently load a large number of GODs. The as-prepared biosensor shows a good performance toward both oxygen reduction and glucose biosensing. This study essentially offers a novel approach for the development of biosensors with excellent analytical properties.
引用
收藏
页码:1371 / 1377
页数:7
相关论文
共 50 条
  • [31] Facile Fabrication of Platinum Nanoparticles Supported on Nitrogen-doped Carbon Nanotubes and Their Catalytic Activity
    Wang, Ling-ling
    Shen, Long
    Jin, Hai-ying
    Zhu, Lu-ping
    Wang, Li-jun
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2014, 27 (03) : 327 - 331
  • [32] Nitrogen-containing three-dimensional biomass porous carbon materials as an efficient enzymatic biosensing platform for glucose sensing
    Shan, Baixi
    Ji, Yanhua
    Zhong, Youbao
    Chen, Lai
    Li, Shanshan
    Zhang, Jie
    Chen, Liling
    Liu, Xuan
    Chen, Yuan
    Yan, Nan
    Song, Yonggui
    RSC ADVANCES, 2019, 9 (44) : 25647 - 25654
  • [33] Thermal and chemical durability of nitrogen-doped carbon nanotubes
    Liu, Hao
    Zhang, Yong
    Li, Ruying
    Sun, Xueliang
    Abou-Rachid, Hakima
    JOURNAL OF NANOPARTICLE RESEARCH, 2012, 14 (08)
  • [34] Nitrogen-Doped Carbon Nanotubes from Amine Flames
    Liao, Lingmin
    Fang, Pengfei
    Pan, Chunxu
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (02) : 1060 - 1067
  • [35] Boron- and nitrogen-doped carbon nanotubes and graphene
    Panchakarla, L. S.
    Govindaraj, A.
    Rao, C. N. R.
    INORGANICA CHIMICA ACTA, 2010, 363 (15) : 4163 - 4174
  • [36] Nitrogen-doped carbon nanotubes. Synthesis and uses
    Dettlaff, Anna
    Wilamowska-Zawlocka, Monika
    Klugmann-Radziemska, Ewa
    PRZEMYSL CHEMICZNY, 2017, 96 (01): : 218 - 222
  • [37] Nitrogen-Doped Carbon Nanotubes: Growth, Mechanism and Structure
    O'Byrne, Justin P.
    Li, Zhonglai
    Jones, Sarah L. T.
    Fleming, Peter G.
    Larsson, J. Andreas
    Morris, Michael A.
    Holmes, Justin D.
    CHEMPHYSCHEM, 2011, 12 (16) : 2995 - 3001
  • [38] Nitrogen-doped carbon nanotubes produced by solar energy
    Luxembourg, D.
    Flamant, G.
    Laplaze, D.
    Sauvajol, J. L.
    Enouz, S.
    Loiseau, A.
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2007, 15 (04) : 257 - 266
  • [39] Thermal and chemical durability of nitrogen-doped carbon nanotubes
    Hao Liu
    Yong Zhang
    Ruying Li
    Xueliang Sun
    Hakima Abou-Rachid
    Journal of Nanoparticle Research, 2012, 14
  • [40] Nitrogen-doped carbon nanotubes for heat transfer applications
    Bazmi, Mohammad
    Askari, Saeed
    Ghasemy, Ebrahim
    Rashidi, Alimorad
    Ettefaghi, Ehsanollah
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 138 (01) : 69 - 79