Nationwide exposure model for COVID-19 intensive care unit admission

被引:0
|
作者
Schuppert, A. [1 ]
Theisen, S. [2 ]
Frankel, P. [2 ]
Weber-Carstens, S. [3 ]
Karagiannidis, C. [4 ]
机构
[1] Rhein Westfal TH Aachen, Univ Klinikum Aachen, Inst Computat Biomed, Pauwelsstr 19, D-52074 Aachen, Germany
[2] Rhein Westfal TH Aachen, Vorstandsstab Univ Klinikum Aachen, Aachen, Germany
[3] Charite Univ Med Berlin, Klin Anasthesiol & Operat Intensivmed CCM CVK, Berlin, Germany
[4] Univ Witten Herdecke, Kliniken Stadt Koln, ARDS & ECMO Zentrum Koln Merheim, Cologne, Germany
关键词
Acute respiratory distress syndrome; ICU; Model; Scenario; Simulation;
D O I
10.1007/s00063-021-00791-7
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Forecasting models for intensive care occupancy of coronavirus disease 2019 (COVID-19) patients are important in the current pandemic for strategic planning of patient allocation and avoidance of regional overcrowding. They are often trained entirely on retrospective infection and occupancy data, which can cause forecast uncertainty to grow exponentially with the forecast horizon. Methodology We propose an alternative modeling approach in which the model is created largely independent of the occupancy data being simulated. The distribution of bed occupancies for patient cohorts is calculated directly from occupancy data from "sentinel clinics". By coupling with infection scenarios, the prediction error is constrained by the error of the infection dynamics scenarios. The model allows systematic simulation of arbitrary infection scenarios, calculation of bed occupancy corridors, and sensitivity analyses with respect to protective measures. Results The model was based on hospital data and by adjusting only two parameters of data in the Aachen city region and Germany as a whole. Using the example of the simulation of the respective bed occupancy rates for Germany as a whole, the loading model for the calculation of occupancy corridors is demonstrated. The occupancy corridors form barriers for bed occupancy in the event that infection rates do not exceed specific thresholds. In addition, lockdown scenarios are simulated based on retrospective events. Discussion Our model demonstrates that a significant reduction in forecast uncertainty in occupancy forecasts is possible by selectively combining data from different sources. It allows arbitrary combination with infection dynamics models and scenarios, and thus can be used both for load forecasting and for sensitivity analyses for expected novel spreading and lockdown scenarios.
引用
收藏
页码:218 / 226
页数:9
相关论文
共 50 条
  • [11] Development and Validation of a Red Flag Prediction Model for Admission of COVID-19 Patients to the Intensive Care Unit
    Mahran, Ghada S. K.
    Gadallah, Marzoka A.
    Mekkawy, Mimi M.
    Ahmed, Sanaa M.
    Sayed, Magdy M. M.
    Obiedallah, Ahmed A.
    Abbas, Mostafa S.
    Mohamed, Sherif A. A.
    [J]. CRITICAL CARE NURSING QUARTERLY, 2023, 46 (02) : 217 - 226
  • [12] Validated tool for early prediction of intensive care unit admission in COVID-19 patients
    Hao-Fan Huang
    Yong Liu
    Jin-Xiu Li
    Hui Dong
    Shan Gao
    Zheng-Yang Huang
    Shou-Zhi Fu
    Lu-Yu Yang
    Hui-Zhi Lu
    Liao-You Xia
    Song Cao
    Yi Gao
    Xia-Xia Yu
    [J]. World Journal of Clinical Cases, 2021, 9 (28) : 8388 - 8403
  • [13] Early predictors of intensive care unit admission among COVID-19 patients in Qatar
    Abuyousef, Safae
    Alnaimi, Shaikha
    Omar, Nabil E.
    Elajez, Reem
    Elmekaty, Eman
    Abdelfattah-Arafa, Eiman
    Barazi, Raja
    Ghasoub, Rola
    Rahhal, Ala
    Hamou, Fatima
    Al-Amri, Maha
    Karawia, Ahmed
    Ajaj, Fatima
    Alkhawaja, Raja
    Kardousha, Ahmed
    Awaisu, Ahmed
    Abou-Ali, Adel
    Khatib, Mohamad
    Aboukamar, Mohammed
    Al-Hail, Moza
    [J]. FRONTIERS IN PUBLIC HEALTH, 2024, 12
  • [14] Predictive models of intensive care unit admission in patients with covid-19: systematic review
    Castaneda-Sabogal, Alex
    Rivera-Ramirez, Paola
    Espinoza-Rivera, Saul
    Leon-Figueroa, Darwin A.
    Moreno-Ramos, Emilly
    Barboza, Joshuan J.
    [J]. REVISTA DEL CUERPO MEDICO DEL HOSPITAL NACIONAL ALMANZOR AGUINAGA ASENJO, 2022, 15
  • [15] Evaluation of Hematological Parameters in Predicting Intensive Care Unit Admission in COVID-19 Patients
    Animesh Saurabh
    Biswajit Dey
    Vandana Raphael
    Bhupen Barman
    Priyanka Dev
    Iadarilang Tiewsoh
    Bifica Sofia Lyngdoh
    Kaustuv Dutta
    [J]. SN Comprehensive Clinical Medicine, 4 (1)
  • [16] Predicting Intensive Care Unit Admission for COVID-19 Patients from Laboratory Results
    Azad Allarakia, Basmah M.
    Gattan, Hattan S.
    Abdeen, Rawan H.
    Al-ahmadi, Bassam M.
    Shater, Abdullah F.
    Bazaid, Mohammed B.
    Althomali, Omar W.
    Bazaid, Abdulrahman S.
    [J]. DISEASE MARKERS, 2022, 2022
  • [17] COVID-19: booster(s) vs. hospitalization and Intensive Care Unit admission
    Toprak, O. Baydar
    Akpolat, T.
    Uzun, O.
    Deniz, P. Pinar
    Kokturk, N.
    Varol, A.
    Guzel, E.
    Ercelik, M.
    Gultekin, O.
    Guner, R.
    Turan, S.
    Bekta, S. Goebulut
    Coskun, N.
    Bakan, N.
    Yakar, M. Nuri
    Kutsoylu, O. Eren
    Ergan, B.
    Baris, S. Argun
    Basyigit, I
    Boyaci, H.
    Cetinkaya, F.
    Colak, H.
    Aykac, N.
    Ketencioglu, B. Baran
    Yuce, Z. Ture
    Isik, S. Akkaya
    Yilmaz, E. Serap
    Karaoglanoglu, S.
    Safgi, S. Berik
    Ozkan, G.
    Kose, N.
    Kizilirmak, D.
    Havlucu, Y.
    Nural, S.
    Kerget, F.
    Sunal, Oe.
    Yuksel, A.
    Dursun, Z. Bestepe
    Deveci, F.
    Kuluozturk, M.
    Ataoglu, O.
    Dursun, M.
    Keskin, S.
    Sezgin, M. Emin
    Sezgin, E. n. Aktepe
    Eser, F.
    Akyildiz, L.
    Almaz, M. Selim
    Kayaaslan, B.
    Hasanoglu, I.
    [J]. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2023, 27 (05) : 2132 - 2142
  • [18] Derivation and validation of a risk score for admission to the Intensive Care Unit in patients with COVID-19
    Ena, J.
    Segura-Heras, J., V
    Fonseca-Aizpuru, E. M.
    Lopez-Reboiro, M. L.
    Gracia-Gutierrez, A.
    Martin-Oterino, J. A.
    Diez-Canseco, A. Martin-Urda
    Perez-Garcia, C.
    Ramos-Rincon, J. M.
    Gomez-Huelgas, R.
    [J]. REVISTA CLINICA ESPANOLA, 2022, 222 (01): : 1 - 12
  • [19] Risk factors for intensive care unit admission and mortality in hospitalized COVID-19 patients
    Ayaz, Ahmed
    Arshad, Ainan
    Malik, Hajra
    Ali, Haris
    Hussain, Erfan
    Jamil, Bushra
    [J]. ACUTE AND CRITICAL CARE, 2020, 35 (04) : 249 - 254
  • [20] Validated tool for early prediction of intensive care unit admission in COVID-19 patients
    Huang, Hao-Fan
    Liu, Yong
    Li, Jin-Xiu
    Dong, Hui
    Gao, Shan
    Huang, Zheng-Yang
    Fu, Shou-Zhi
    Yang, Lu-Yu
    Lu, Hui-Zhi
    Xia, Liao-You
    Cao, Song
    Gao, Yi
    Yu, Xia-Xia
    [J]. WORLD JOURNAL OF CLINICAL CASES, 2021, 9 (28) : 8388 - 8403