Error Estimation of a Class of Stable Spectral Approximation to the Cahn-Hilliard Equation

被引:16
|
作者
He, Li-ping [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200030, Peoples R China
关键词
Cahn-Hilliard equation; Stable spectral schemes; Existence; Uniqueness; Convergence; FINITE-ELEMENT-METHOD; TIME-STEPPING METHODS; DIFFERENCE SCHEME; KINETICS; STABILITY;
D O I
10.1007/s10915-009-9309-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, the initial-boundary value problem of two-dimensional Cahn-Hilliard equation is considered. A class of fully discrete dissipative Fourier spectral schemes are proposed. The existence of the numerical solution is proved by a series of a priori estimations and the Brower fixed point theorem. The uniqueness of the numerical solution is discussed. The optimal converge rate is obtained by the energy method. The numerical simulations are performed to demonstrate the effectiveness of the proposed schemes.
引用
收藏
页码:461 / 482
页数:22
相关论文
共 50 条
  • [41] A new formulation of the Cahn-Hilliard equation
    Miranville, A
    Piétrus, A
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (02) : 285 - 307
  • [42] SPECIAL CASE OF THE CAHN-HILLIARD EQUATION
    Frolovskaya, O. A.
    Admaev, O. V.
    Pukhnachev, V. V.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2013, 10 : 324 - 334
  • [43] Pulled fronts in the Cahn-Hilliard equation
    Malomed, BA
    Frantzeskakis, DJ
    Nistazakis, HE
    Yannacopoulos, AN
    Kevrekidis, PG
    [J]. PHYSICS LETTERS A, 2002, 295 (5-6) : 267 - 272
  • [44] A Cahn-Hilliard equation with singular diffusion
    Schimperna, Giulio
    Pawlow, Irena
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (02) : 779 - 803
  • [45] Numerical approximation of the fractional Cahn-Hilliard equation by operator splitting method
    Shuying Zhai
    Longyuan Wu
    Jingying Wang
    Zhifeng Weng
    [J]. Numerical Algorithms, 2020, 84 : 1155 - 1178
  • [46] Stationary solutions for the Cahn-Hilliard equation
    Wei, JC
    Winter, M
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (04): : 459 - 492
  • [47] SPINODAL DECOMPOSITION FOR THE CAHN-HILLIARD EQUATION
    GRANT, CP
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (3-4) : 453 - 490
  • [48] Local Dynamics of Cahn-Hilliard Equation
    Kashchenko, S. A.
    Plyshevskaya, S. P.
    [J]. NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2019, 22 (01): : 93 - 97
  • [49] NONLINEAR ASPECTS OF THE CAHN-HILLIARD EQUATION
    NOVICKCOHEN, A
    SEGEL, LA
    [J]. PHYSICA D, 1984, 10 (03): : 277 - 298
  • [50] ENERGY METHODS FOR THE CAHN-HILLIARD EQUATION
    NOVICKCOHEN, A
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 1988, 46 (04) : 681 - 690