A threshold result for a non-local parabolic equation

被引:0
|
作者
Wu, YH
机构
[1] Inst. Appl. Phys. and Compl. Math., Beijing 100088
关键词
D O I
10.1002/(SICI)1099-1476(19970725)20:11<933::AID-MMA892>3.0.CO;2-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem: [GRAPHICS] The stationary problem for (ECP) is the famous Choquard-Pekar problem, and it has a unique positive solution (u) over bar(x) as long as p(x) is radial, continuous in R-3, p(x) greater than or equal to (a) over bar > 0, and lim(\x\-->infinity)p(x) = (p) over bar > 0. In this paper, we prove that if the initial data 0 less than or equal to u(0)(x) less than or equal to (not equal) (u) over bar(x), then the corresponding solution u(x,t) exists globally and it tends to the zero steady-state solution as t --> infinity, if u(0)(x) greater than or equal to (not equal) (u) over bar(x), then the solution u(x,t) blows up in finite time. (C) 1997 by B. G. Teubner Stuttgart-John Wiley & Sons Ltd.
引用
收藏
页码:933 / 943
页数:11
相关论文
共 50 条
  • [31] Uniqueness of the Solution of One Non-Local Boundary Value Problem for the Mixed Parabolic Type Equation
    Karimov, E. T.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2007, 8 (M07): : 44 - 48
  • [32] Some non-local problems for the parabolic-hyperbolic type equation with complex spectral parameter
    Karimov, E. T.
    [J]. MATHEMATISCHE NACHRICHTEN, 2008, 281 (07) : 959 - 970
  • [33] On the blow-up of a non-local parabolic problem
    Kavallaris, N. I.
    Tzanetis, D. E.
    [J]. APPLIED MATHEMATICS LETTERS, 2006, 19 (09) : 921 - 925
  • [34] On the box method for a non-local parabolic variational inequality
    Allegretto, W
    Lin, YP
    Ma, SQ
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2001, 1 (01): : 71 - 88
  • [35] Holder estimates for singular non-local parabolic equations
    Kim, Sunghoon
    Lee, Ki-Ahm
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (12) : 3482 - 3518
  • [36] On the parabolic Harnack inequality for non-local diffusion equations
    Dominik Dier
    Jukka Kemppainen
    Juhana Siljander
    Rico Zacher
    [J]. Mathematische Zeitschrift, 2020, 295 : 1751 - 1769
  • [37] Non-local quasi-linear parabolic equations
    Amann, H
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2005, 60 (06) : 1021 - 1033
  • [38] On the parabolic Harnack inequality for non-local diffusion equations
    Dier, Dominik
    Kemppainen, Jukka
    Siljander, Juhana
    Zacher, Rico
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2020, 295 (3-4) : 1751 - 1769
  • [39] A non-local coarsening result in granular probabilistic networks
    Butz, CJ
    Yao, H
    Hamilton, HJ
    [J]. ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, 2003, 2639 : 686 - 689
  • [40] On the wave equation with a temporal non-local term
    Medjden, Mohamed
    Tatar, Nasser-Eddinne
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2007, 16 (04): : 665 - 671