Assessing the SMOS Soil Moisture Retrieval Parameters With High-Resolution NAFE'06 Data

被引:21
|
作者
Merlin, Olivier [1 ]
Walker, Jeffrey Phillip [2 ]
Panciera, Rocco [2 ]
Jose Escorihuela, Maria [3 ]
Jackson, Thomas J. [4 ]
机构
[1] Ctr Etud Spatiales Biosphere, F-31401 Toulouse, France
[2] Univ Melbourne, Dept Civil & Environm Engn, Melbourne, Vic 3010, Australia
[3] IsardSAT, Barcelona 08031, Spain
[4] USDA, Annapolis, MD 21409 USA
基金
澳大利亚研究理事会;
关键词
Airborne experiment; calibration; L-band radiometry; National Airborne Field Experiment (NAFE); retrieval algorithm; soil moisture; Soil Moisture and Ocean Salinity (SMOS); MICROWAVE EMISSION; MODEL;
D O I
10.1109/LGRS.2009.2012727
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The spatial and temporal invariance of Soil Moisture and Ocean Salinity (SMOS) forward model parameters for soil moisture retrieval was assessed at 1-km resolution on a diurnal basis with data from the National Airborne Field Experiment 2006. The approach used was to apply the SMOS default parameters uniformly over 27 1-km validation pixels, retrieve soil moisture from the airborne observations, and then to interpret the differences between airborne and ground estimates in terms of land use, parameter variability, and sensing depth. For pastures ( 17 pixels) and nonirrigated crops ( 5 pixels), the root mean square error (rmse) was 0.03 volumetric (vol./vol.) soil moisture with a bias of 0.004 vol./vol. For pixels dominated by irrigated crops ( 5 pixels), the rmse was 0.10 vol./vol., and the bias was -0.09 vol./vol. The correlation coefficient between bias in irrigated areas and the 1-km field soil moisture variability was found to be 0.73, which suggests either 1) an increase of the soil dielectric roughness ( up to about one) associated with small-scale heterogeneity of soil moisture or/and 2) a difference in sensing depth between an L-band radiometer and the in situ measurements, combined with a strong vertical gradient of soil moisture in the top 6 cm of the soil.
引用
收藏
页码:635 / 639
页数:5
相关论文
共 50 条
  • [41] FIRST GLANCE ON A REVISED SMOS SOIL MOISTURE RETRIEVAL ALGORITHM: EVALUATION WITH RESPECT TO ECMWF SOIL MOISTURE SIMULATIONS
    Al-Yaari, A.
    Fernandez-Moran, R.
    Wigneron, J. -P.
    Mialon, A.
    Mahmoodi, A.
    Al Bitar, A.
    Kerr, Y.
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1566 - 1569
  • [42] Comparison of Dobson and Mironov Dielectric Models in the SMOS Soil Moisture Retrieval Algorithm
    Mialon, Arnaud
    Richaume, Philippe
    Leroux, Delphine
    Bircher, Simone
    Al Bitar, Ahmad
    Pellarin, Thierry
    Wigneron, Jean-Pierre
    Kerr, Yann H.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (06): : 3084 - 3094
  • [43] Calibration of SMOS Soil Moisture Retrieval Algorithm: A Case of Tropical Site in Malaysia
    Kang, Chuen Siang
    Kanniah, Kasturi Devi
    Kerr, Yann H.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (06): : 3827 - 3839
  • [44] IDENTIFICATION OF SOIL MOISTURE RETRIEVAL ERRORS: LEARNING FROM THE COMPARISON OF SMOS AND ASCAT
    Wagner, Wolfgang
    Hahn, Sebastian
    Gruber, Alexander
    Dorigo, Wouter
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 3795 - 3798
  • [45] Global SMOS Soil Moisture Retrievals from The Land Parameter Retrieval Model
    van der Schalie, R.
    Kerr, Y. H.
    Wignerond, J. P.
    Rodriguez-Fernandez, N. J.
    Al-Yaari, A.
    de Jeu, R. A. M.
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2016, 45 : 125 - 134
  • [46] Optimizing the algorithm for retrieving soil moisture from SMOS data
    Waldteufel, P.
    Richaume, P.
    Kerr, Y.
    Wigneron, J. -P
    Mahmoodi, A.
    Mialon, A.
    Vergely, J. -L
    Cabot, F.
    Ferrazzoli, P.
    Delwart, S.
    [J]. IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 3952 - +
  • [47] SMOS soil moisture data validation in the Aurajoki watershed, Finland
    Jakkila, Juho
    Vento, Tiia
    Rousi, Tapani
    Vehvilainen, Bertel
    [J]. HYDROLOGY RESEARCH, 2014, 45 (4-5): : 684 - 702
  • [48] The Merit of Estimating High-Resolution Soil Moisture Using Combined Optical, Thermal, and Microwave Data
    Li, Ji
    Leng, Guoyong
    Peng, Jian
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [49] Prediction of High-Resolution Soil Moisture Using Multi-source Data and Machine Learning
    Sudhakara, B.
    Bhattacharjee, Shrutilipi
    [J]. DISTRIBUTED COMPUTING AND INTELLIGENT TECHNOLOGY, ICDCIT 2024, 2024, 14501 : 282 - 292
  • [50] A Framework for High-Resolution Soil Moisture Extraction Using SCATSAT-1 Scatterometer Data
    Murugan, Deepak
    Maurya, Ajay Kumar
    Garg, Akanksha
    Singh, Dharmendra
    [J]. IETE TECHNICAL REVIEW, 2020, 37 (02) : 147 - 156