Piecewise-affine control of a three DOF helicopter

被引:0
|
作者
Yue, Wei [1 ]
Rodrigues, Luis [1 ]
Gordon, Brandon [1 ]
机构
[1] Concordia Univ, Dept Mech & Ind Engn, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper develops a piecewise-affine (PWA) controller for a nonlinear three degree of freedom (DOF) helicopter model. To design this controller a local linear controller is designed for a PWA approximation of the model in the region where the desired closed-loop equilibrium point lies. An optimization problem subject to Bilinear Matrix Inequalities (BMIs) is then solved to find a PWA semi-global extension of the linear controller. A piecewise-quadratic Lyapunov function is found which proves stability of the PWA closed-loop system in the whole domain of the nonlinearity. This research represents the first development of a PWA model and controller for a helicopter. The synthesis method presented in this paper enables the extension of a local linear controller designed for helicopter performance to a stabilizing semi-global PWA controller that still meets the helicopter performance requirements while the system operates close to the equilibrium point.
引用
收藏
页码:3924 / +
页数:2
相关论文
共 50 条
  • [31] Temporal Logic Control of Nonlinear Stochastic Systems Using a Piecewise-Affine Abstraction
    van Huijgevoort, B. C.
    Weiland, S.
    Haesaert, S.
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 1039 - 1044
  • [32] Robust explicit model predictive control via regular piecewise-affine approximation
    Rubagotti, Matteo
    Barcelli, Davide
    Bemporad, Alberto
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (12) : 2583 - 2593
  • [33] An algorithm for automatic domain partitioning of Piecewise-Affine Model Predictive Control laws
    Oliveri, Alberto
    Canepa, Alessio
    Queirolo, Leonardo
    Storace, Marco
    [J]. 2013 IEEE 20TH INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS, AND SYSTEMS (ICECS), 2013, : 217 - 220
  • [34] Synthesis of piecewise-affine controllers for stabilization of nonlinear systems
    Rodrigues, L
    How, JP
    [J]. 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 2071 - 2076
  • [35] Soy: An Efficient MILP Solver for Piecewise-Affine Systems
    Wu, Haoze
    Wu, Min
    Sadigh, Dorsa
    Barrett, Clark
    [J]. 2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 6281 - 6288
  • [36] THE TWO-WELL PROBLEM FOR PIECEWISE-AFFINE MAPS
    Dacorogna, Bernard
    Marcellini, Paolo
    Paolini, Emanuele
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2012, 17 (7-8) : 673 - 696
  • [37] Practical stabilization for piecewise-affine systems: A BMI approach
    Kamri, D.
    Bourdais, R.
    Buisson, J.
    Larbes, C.
    [J]. NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2012, 6 (03) : 859 - 870
  • [38] Piecewise-affine state feedback using convex optimization
    Rodrigues, L
    Boyd, S
    [J]. PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 5164 - 5169
  • [39] Fast Piecewise-Affine Motion Estimation Without Segmentation
    Fortun, Denis
    Storath, Martin
    Rickert, Dennis
    Weinmann, Andreas
    Unser, Michael
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (11) : 5612 - 5624
  • [40] Transformations Based on Continuous Piecewise-Affine Velocity Fields
    Freifeld, Oren
    Hauberg, Soren
    Batmanghelich, Kayhan
    Fisher, Jonn W., III
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2496 - 2509