Neural network (NN) models were developed for predicting and classifying an objective measurement of tenderness using carcass data such as pre-slaughter information (sex, age, kill order), weights, pH, temperatures, lean color readings, lab-determined measurements, grade measurements and organ weights. Tenderness was expressed objectively as Warner-Bratzler shear (WBS) force measured on steaks, aged 6 d, from the longissimus thoracis et lumborum (LTL) muscle. Carcass data from experiments conducted between 1985 and 1995 at the Lacombe Research Centre were combined to form large data sets (n = 775-1177) for modeling. Neural network models to predict actual shear values showed limited potential (R-2 = 0.37-0.45) and were only marginally better than a multiple linear regression (MLR) model (R-2 = 0.34). Neural network models that classified carcasses into tenderness categories showed better potential (mean accuracy 51-53%). The best four-category (tender, probably tender, probably tough, tough) model classified tender and tough steaks with accuracies of 0.64 and 0.79, respectively. This model reduced tough and probably tough carcasses by 55% in our population. The model required the following II inputs, which, except for cooking method, are available by 24 h postmortem: sex, live plant weight, hot carcass weight, 24-h cooler shrink, 24-h pH, 24-h CIE color b*, 24-h CIE lightness L* x hue angle, rib eye area, grader's marbling score (AMSA%), grade, and cooking method. By implementing techniques outlined in this study in a plant situation, the current 23% unacceptable consumer rating for Canadian beef could be reduced to 10-12%.