Computational experience with a new class of convex underestimators: Box-constrained NLP problems

被引:46
|
作者
Akrotirianakis, IG [1 ]
Floudas, CA [1 ]
机构
[1] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA
关键词
Branch-and-Bound; convex underestimators; global optimization;
D O I
10.1023/B:JOGO.0000044768.75992.10
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In Akrotirianakis andFloud as ( 2004) we presented the theoretical foundations of a new class of convex underestimators for C-2 nonconvex functions. In this paper, we present computational experience with those underestimators incorporated within a Branch-and-Bound algorithm for box-conatrained problems. The algorithm can be used to solve global optimization problems that involve C-2 functions. We discuss several ways of incorporating the convex underestimators within a Branch-and-Bound framework. The resulting Branch-and-Bound algorithm is then used to solve a number of difficult box-constrained global optimization problems. A hybrid algorithm is also introduced, which incorporates a stochastic algorithm, the Random-Linkage method, for the solution of the nonconvex underestimating subproblems, arising within a Branch-and-Bound framework. The resulting algorithm also solves efficiently the same set of test problems.
引用
收藏
页码:249 / 264
页数:16
相关论文
共 50 条
  • [21] Discrete Box-Constrained Minimax Classifier for Uncertain and Imbalanced Class Proportions
    Gilet, Cyprien
    Barbosa, Susana
    Fillatre, Lionel
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (06) : 2923 - 2937
  • [22] Inexact Restoration for Euler Discretization of Box-Constrained Optimal Control Problems
    Banihashemi, Nahid
    Kaya, C. Yalcin
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 156 (03) : 726 - 760
  • [23] An efficient preconditioning method for state box-constrained optimal control problems
    Axelsson, Owe
    Neytcheva, Maya
    Strom, Anders
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2018, 26 (04) : 185 - 207
  • [24] Inexact Restoration for Euler Discretization of Box-Constrained Optimal Control Problems
    Nahid Banihashemi
    C. Yalçın Kaya
    [J]. Journal of Optimization Theory and Applications, 2013, 156 : 726 - 760
  • [25] Algorithm 774: Fortran subroutines for generating box-constrained optimization problems
    Universita di Roma `La Sapienza', Rome, Italy
    [J]. ACM Trans Math Software, 3 (448-450):
  • [26] MULTIGRID PRECONDITIONING OF LINEAR SYSTEMS FOR INTERIOR POINT METHODS APPLIED TO A CLASS OF BOX-CONSTRAINED OPTIMAL CONTROL PROBLEMS
    Draganescu, Andrei
    Petra, Cosmin
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (01) : 328 - 353
  • [27] A MODIFICATION PIECEWISE CONVEXIFICATION METHOD WITH A CLASSIFICATION STRATEGY FOR BOX-CONSTRAINED NON-CONVEX
    Zhu, Qiao
    Tang, Liping
    Yang, Xinmin
    [J]. JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2024, 8 (01): : 125 - 142
  • [28] A Limited Memory Gradient Projection Method for Box-Constrained Quadratic Optimization Problems
    Crisci, Serena
    Porta, Federica
    Ruggiero, Valeria
    Zanni, Luca
    [J]. NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS, PT I, 2020, 11973 : 161 - 176
  • [29] Hybrid limited memory gradient projection methods for box-constrained optimization problems
    Crisci, Serena
    Porta, Federica
    Ruggiero, Valeria
    Zanni, Luca
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 84 (01) : 151 - 189
  • [30] Linear complementarity model predictive control with limited iterations for box-constrained problems
    Okawa, Isao
    Nonaka, Kenichiro
    [J]. AUTOMATICA, 2021, 125