Computation offloading in Edge Computing environments using Artificial Intelligence techniques

被引:34
|
作者
Carvalho, Goncalo [1 ]
Cabral, Bruno [1 ]
Pereira, Vasco [1 ]
Bernardino, Jorge [1 ,2 ]
机构
[1] Univ Coimbra, Ctr Informat & Syst, Dept Informat Engn, Coimbra, Portugal
[2] Polytech Coimbra, ISEC, Coimbra, Portugal
关键词
Artificial Intelligence; Computation offloading; Edge Computing; Machine Learning; OF-THE-ART; MOBILE EDGE; RESOURCE-ALLOCATION; CLOUD; FOG; IOT; EXECUTION; FRAMEWORK; THINGS; GAME;
D O I
10.1016/j.engappai.2020.103840
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Edge Computing (EC) is a recent architectural paradigm that brings computation close to end-users with the aim of reducing latency and bandwidth bottlenecks, which 5G technologies are committed to further reduce, while also achieving higher reliability. EC enables computation offloading from end devices to edge nodes. Deciding whether a task should be offloaded, or not, is not trivial. Moreover, deciding when and where to offload a task makes things even harder and making inadequate or off-time decisions can undermine the EC approach. Recently, Artificial Intelligence (AI) techniques, such as Machine Learning (ML), have been used to help EC systems cope with this problem. AI promises accurate decisions, higher adaptability and portability, thus diminishing the cost of decision-making and the probability of error. In this work, we perform a literature review on computation offloading in EC systems with and without AI techniques. We analyze several AI techniques, especially ML-based, that display promising results, overcoming the shortcomings of current approaches for computing offloading coordination We sorted the ML algorithms into classes for better analysis and provide an in-depth analysis on the use of AI for offloading, in particular, in the use case of offloading in Vehicular Edge Computing Networks, actually one technology that gained more relevance in the last years, enabling a vast amount of solutions for computation and data offloading. We also discuss the main advantages and limitations of offloading, with and without the use of AI techniques.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] MVR: an Architecture for Computation Offloading in Mobile Edge Computing
    Wei, Xiaojuan
    Wang, Shangguang
    Zhou, Ao
    Xu, Jinliang
    Su, Sen
    Kumar, Sathish
    Yang, Fangchun
    2017 IEEE 1ST INTERNATIONAL CONFERENCE ON EDGE COMPUTING (IEEE EDGE), 2017, : 232 - 235
  • [32] QoE-driven computation offloading for Edge Computing
    Luo, Jie
    Deng, Xiaoheng
    Zhang, Honggang
    Qi, Huamei
    JOURNAL OF SYSTEMS ARCHITECTURE, 2019, 97 : 34 - 39
  • [33] Dynamic Computation Offloading in Edge Computing for Internet of Things
    Chen, Ying
    Zhang, Ning
    Zhang, Yongchao
    Chen, Xin
    IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (03): : 4242 - 4251
  • [34] Mobility Aware Computation Offloading Model for Edge Computing
    Tefera, Natnael
    Habtie, Ayalew Belay
    ACCELERATING SCIENCE AND ENGINEERING DISCOVERIES THROUGH INTEGRATED RESEARCH INFRASTRUCTURE FOR EXPERIMENT, BIG DATA, MODELING AND SIMULATION, SMC 202, 2022, 1690 : 54 - 71
  • [35] A Survey on Computation Offloading for Mobile Edge Computing Information
    Shan, Xiaoyu
    Li, Peng
    Zhi, Hanxiao
    Han, Zhijie
    2018 IEEE 4TH INTERNATIONAL CONFERENCE ON BIG DATA SECURITY ON CLOUD (BIGDATASECURITY), 4THIEEE INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING, (HPSC) AND 3RD IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA AND SECURITY (IDS), 2018, : 248 - 251
  • [36] Multiuser Computation Offloading and Downloading for Edge Computing With Virtualization
    Liang, Zezu
    Liu, Yuan
    Lok, Tat-Ming
    Huang, Kaibin
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (09) : 4298 - 4311
  • [37] Energy Efficient Computation Offloading in Mobile Edge Computing
    Rong, Bo
    Chen, Ying
    Zhang, Ning
    Wu, Yuan
    Shen, Sherman
    IEEE WIRELESS COMMUNICATIONS, 2023, 30 (02) : 8 - 8
  • [38] A Survey of Computation Offloading in Vehicular Edge Computing Networks
    Liu L.
    Chen C.
    Feng J.
    Xiao T.-T.
    Pei Q.-Q.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2021, 49 (05): : 861 - 871
  • [39] Computation offloading and service allocation in mobile edge computing
    Chunlin Li
    Qianqian Cai
    Chaokun Zhang
    Bingbin Ma
    Youlong Luo
    The Journal of Supercomputing, 2021, 77 : 13933 - 13962
  • [40] User-Centric Computation Offloading for Edge Computing
    Deng, Xiaoheng
    Sun, Zihui
    Li, Deng
    Luo, Jie
    Wan, Shaohua
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (16) : 12559 - 12568