Parametric versus nonparametric tolerance regions in detection problems

被引:15
|
作者
Baillo, Amparo [1 ]
Cuevas, Antonio [1 ]
机构
[1] Univ Carlos III Madrid, Dept Estadist, Madrid 28903, Spain
关键词
level sets; quality control; density estimates; normal mixtures;
D O I
10.1007/s00180-006-0010-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A major problem in statistical quality control is to detect a change in the distribution of independent sequentially observed random vectors. The case of a Gaussian pre-change distribution has been extensively analyzed. Here we are concerned with the non-normal multivariate case. In this setup it is natural to use tolerance regions as detection tools. These regions are defined in terms of density level sets, which can be estimated in a plug-in fashion. Under a normal mixture model we compare, through a simulation study, the performance of such a detection scheme for two density estimators: a (parametric) normal mixture and a (nonparametric) kernel estimator. The problem of the bandwidth choice for the latter is addressed. We also obtain a result concerning the convergence rates of the error probabilities under a general parametric model. Finally, a real data example is discussed.
引用
收藏
页码:523 / 536
页数:14
相关论文
共 50 条
  • [1] Parametric versus nonparametric tolerance regions in detection problems
    Amparo Baíllo
    Antonio Cuevas
    [J]. Computational Statistics, 2006, 21 : 523 - 536
  • [2] NONPARAMETRIC TOLERANCE REGIONS
    FRASER, DAS
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1953, 24 (01): : 44 - 55
  • [3] Smallest nonparametric tolerance regions
    Di Bucchianico, A
    Einmahl, JHJ
    Mushkudiani, NA
    [J]. ANNALS OF STATISTICS, 2001, 29 (05): : 1320 - 1343
  • [4] NONPARAMETRIC DISCRIMINATION USING TOLERANCE REGIONS
    QUESENBERRY, CP
    GESSAMAN, MP
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (02): : 664 - +
  • [5] Parametric embedding of nonparametric inference problems
    Alvo M.
    Lai T.L.
    Yu P.L.H.
    [J]. Journal of Statistical Theory and Practice, 2018, 12 (1) : 151 - 164
  • [6] Nonparametric versus parametric expected shortfall
    Martin, R. Douglas
    Zhang, Shengyu
    [J]. JOURNAL OF RISK, 2019, 21 (06): : 1 - 41
  • [7] Nonparametric versus parametric goodness of fit
    Liero, H
    Lauter, H
    Konakov, V
    [J]. STATISTICS, 1998, 31 (02) : 115 - 149
  • [8] Parametric versus nonparametric: The fitness coefficient
    Mazo, Gildas
    Portier, Francois
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2021, 48 (04) : 1344 - 1383
  • [9] Nonparametric permutation test versus optimum parametric test for radar detection.
    AlvarezVaquero, F
    SanzGonzalez, JL
    [J]. ICSP '96 - 1996 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1996, : 225 - 228
  • [10] UNIVARIATE NONPARAMETRIC HEMOSTATIC TOLERANCE REGIONS IN CHILDREN
    NOWAKGOTTL, U
    KREUZ, WD
    HACHWUNDERLE, V
    BREDDIN, HK
    [J]. THROMBOSIS AND HAEMOSTASIS, 1991, 65 (06) : 1049 - 1049