On deformations of the complex structure on the moduli space of spatial polygons

被引:0
|
作者
Kamiyama, Y [1 ]
Tsukuda, S [1 ]
机构
[1] Univ Ryukyus, Dept Math, Nishihara, Okinawa 9030213, Japan
关键词
polygon space; complex structure;
D O I
10.4153/CMB-2002-043-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an integer n greater than or equal to 3, let M-n be the moduli space of spatial polygons with n edges. We consider the case of odd n. Then M-n is a Fano manifold of complex dimension n - 3. Let circle minusM(n) be the sheaf of germs of holomorphic sections of the tangent bundle TMn. In this paper, we prove H-q(M-n, circle minus(Mn)) = 0 for all q greater than or equal to 0 and all odd n. In particular, we see that the moduli space of deformations of the complex structure on M-n consists of a point. Thus the complex structure on M-n is locally rigid.
引用
收藏
页码:417 / 421
页数:5
相关论文
共 50 条