Moduli spaces of polygons and deformations of polyhedra with boundary

被引:0
|
作者
Anan'in, Sasha [1 ]
Korshunov, Dmitrii [2 ]
机构
[1] Univ Sao Paulo, Sao Carlos, Brazil
[2] Inst Matematica Pura & Aplicada, Rio De Janeiro, Brazil
关键词
Bendable polyhedra; Spaces of polygons; Symplectic geometry;
D O I
10.1007/s10711-023-00834-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a conjecture of Ian Agol: all isometric realizations of a polyhedral surface with boundary sweep out an isotropic subset in the Kapovich-Millson moduli space of polygons isomorphic to the boundary. For a generic polyhedral disk we show that boundaries of its isometric realizations make up a Lagrangian subset. As an application of this result, we conclude that a generic equilateral polygon cannot be domed (in the sense of a problem of Kenyon, Glazyrin and Pak).
引用
收藏
页数:19
相关论文
共 50 条