On the existence of unique global-in-time solutions and temporal decay rates of solutions to some non-Newtonian incompressible fluids

被引:0
|
作者
Bae, Hantaek [1 ]
Kang, Kyungkeun [2 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Dept Math Sci, Ulsan, South Korea
[2] Yonsei Univ, Dept Math, Seoul, South Korea
来源
关键词
Non-Newtonian fluid; Global well-posedness; Temporal decay rates; Primary; 76A05; Secondary; 76D05;
D O I
10.1007/s00033-021-01489-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with a class of incompressible non-Newtonian fluids. We first give some conditions to the viscous part of the stress tensor to set our model. We then show that there exists a unique regular solution globally in time if u0 is an element of L2B</mml:mover>infinity ,11 and is sufficiently small in B<mml:mo></mml:mover>infinity <mml:mo>,11. We finally derive temporal decay rates of the solution which are consistent with the decay rates of the linear part of our model.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Existence of regular solutions for a certain type of non-Newtonian fluids
    Kang, Kyungkeun
    Kim, Hwa Kil
    Kim, Jae-Myoung
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (04):
  • [12] Existence of regular solutions for a certain type of non-Newtonian fluids
    Kyungkeun Kang
    Hwa Kil Kim
    Jae-Myoung Kim
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [13] Existence and uniqueness of compressible MHD solutions for non-Newtonian fluids
    Meng, Qiu
    Xing, Huifang
    Zhao, Yuanyuan
    Yang, Wucai
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (12)
  • [14] Existence, regularity, and decay rate of solutions of non-Newtonian flow
    Bae, HO
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 231 (02) : 467 - 491
  • [15] Strong solutions for the steady incompressible MHD equations of non-Newtonian fluids
    Shi, Weiwei
    Wang, Changjia
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (23) : 1 - 11
  • [16] YOUNG MEASURE-VALUED SOLUTIONS FOR NON-NEWTONIAN INCOMPRESSIBLE FLUIDS
    BELLOUT, H
    BLOOM, F
    NECAS, J
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (11-12) : 1763 - 1803
  • [17] On the behavior in time of solutions to motion of Non-Newtonian fluids
    Moscariello, Gioconda
    Porzio, Maria Michaela
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (04):
  • [18] On the behavior in time of solutions to motion of Non-Newtonian fluids
    Gioconda Moscariello
    Maria Michaela Porzio
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2020, 27
  • [19] Global-in-time existence of some helicoid solutions of Euler equations
    Dutrifoy, A
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (07): : 653 - 656
  • [20] Global weak solutions to a class of non-Newtonian compressible fluids
    Feireisl, E.
    Liao, X.
    Malek, J.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (16) : 3482 - 3494