Convergence and Parameter Choice for Monte-Carlo Simulations of Diffusion MRI

被引:153
|
作者
Hall, Matt G. [1 ]
Alexander, Daniel C. [1 ]
机构
[1] UCL, CMIC, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Data synthesis; diffusion magnetic resonance imaging (MRI); diffusion tensor imaging; Monte-Carlo simulation; validation; RESTRICTED DIFFUSION; SPIN-ECHO; SELF-DIFFUSION; WHITE-MATTER; MAGNETIC-RESONANCE; WATER DIFFUSION; OPTIC-NERVE; HUMAN BRAIN; MODEL; CORD;
D O I
10.1109/TMI.2009.2015756
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper describes a general and flexible Monte-Carlo simulation framework for diffusing spins that generates realistic synthetic data for diffusion magnetic resonance imaging. Similar systems in the literature consider only simple substrates and their authors do not consider convergence and parameter optimization. We show how to run Monte-Carlo simulations within complex irregular substrates. We compare the results of the Monte-Carlo simulation to an analytical model of restricted diffusion to assess precision and accuracy of the generated results. We obtain an optimal combination of spins and updates for a given run time by trading off number of updates in favor of number of spins such that precision and accuracy of sythesized data are both optimized. Further experiments demonstrate the system using a tissue environment that current analytic models cannot capture. This tissue model incorporates swelling, abutting, and deformation. Swelling-induced restriction in the extracellular space due to the effects of abutting cylinders leads to large departures from the predictions of the analytical model, which does not capture these effects. This swelling-induced restriction may be an important mechanism in explaining the changes in apparent diffusion constant observed in the aftermath of acute ischemic stroke.
引用
收藏
页码:1354 / 1364
页数:11
相关论文
共 50 条
  • [21] Dynamic Monte-Carlo simulations of diffusion limited reactions in rough nanopores
    Coppens, MO
    Malek, K
    [J]. CHEMICAL ENGINEERING SCIENCE, 2003, 58 (21) : 4787 - 4795
  • [22] CONVERGENCE CHARACTERISTICS OF MONTE-CARLO COMPUTER-SIMULATIONS ON AQUEOUS-SOLUTIONS
    MEHROTRA, PK
    BEVERIDGE, DL
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1981, 181 (MAR): : 162 - PHYS
  • [23] DIFFUSION OF GASES IN POROUS SOLIDS - MONTE-CARLO SIMULATIONS IN THE KNUDSEN AND ORDINARY DIFFUSION REGIMES
    ABBASI, MH
    EVANS, JW
    ABRAMSON, IS
    [J]. AICHE JOURNAL, 1983, 29 (04) : 617 - 624
  • [24] Evaluation of the diffusion MRI white matter tract integrity model using myelin histology and Monte-Carlo simulations
    Zhou, Zihan
    Tong, Qiqi
    Zhang, Lei
    Ding, Qiuping
    Lu, Hui
    Jonkman, Laura E.
    Yao, Junye
    He, Hongjian
    Zhu, Keqing
    Zhong, Jianhui
    [J]. NEUROIMAGE, 2020, 223
  • [25] ON TIME STRUCTURE IN (MONTE-CARLO) SIMULATIONS
    LASKI, JG
    [J]. OPERATIONAL RESEARCH QUARTERLY, 1965, 16 (03) : 329 - 339
  • [26] Monte-Carlo simulations of superradiant lasing
    Zhang, Yuan
    Zhang, Yu-Xiang
    Molmer, Klaus
    [J]. NEW JOURNAL OF PHYSICS, 2018, 20
  • [27] MONTE-CARLO SIMULATIONS OF NEMATIC MELTS
    YOON, DY
    VACATELLO, M
    MATSUDA, T
    LUDOVICE, P
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 203 : 189 - POLY
  • [28] MONTE-CARLO SIMULATIONS OF THE LEWIS EFFECT
    LANGANKE, K
    REUSCH, HG
    ROLFS, C
    [J]. ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1990, 336 (04): : 403 - 410
  • [29] MONTE-CARLO SIMULATIONS AND COMPLEX ACTIONS
    SCHOENMAKER, WJ
    [J]. PHYSICAL REVIEW D, 1987, 36 (06): : 1859 - 1867
  • [30] MONTE-CARLO SIMULATIONS AND GAUGE FIXING
    VLADIKAS, A
    [J]. PHYSICS LETTERS B, 1986, 169 (01) : 93 - 96