Convergence and Parameter Choice for Monte-Carlo Simulations of Diffusion MRI

被引:153
|
作者
Hall, Matt G. [1 ]
Alexander, Daniel C. [1 ]
机构
[1] UCL, CMIC, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Data synthesis; diffusion magnetic resonance imaging (MRI); diffusion tensor imaging; Monte-Carlo simulation; validation; RESTRICTED DIFFUSION; SPIN-ECHO; SELF-DIFFUSION; WHITE-MATTER; MAGNETIC-RESONANCE; WATER DIFFUSION; OPTIC-NERVE; HUMAN BRAIN; MODEL; CORD;
D O I
10.1109/TMI.2009.2015756
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper describes a general and flexible Monte-Carlo simulation framework for diffusing spins that generates realistic synthetic data for diffusion magnetic resonance imaging. Similar systems in the literature consider only simple substrates and their authors do not consider convergence and parameter optimization. We show how to run Monte-Carlo simulations within complex irregular substrates. We compare the results of the Monte-Carlo simulation to an analytical model of restricted diffusion to assess precision and accuracy of the generated results. We obtain an optimal combination of spins and updates for a given run time by trading off number of updates in favor of number of spins such that precision and accuracy of sythesized data are both optimized. Further experiments demonstrate the system using a tissue environment that current analytic models cannot capture. This tissue model incorporates swelling, abutting, and deformation. Swelling-induced restriction in the extracellular space due to the effects of abutting cylinders leads to large departures from the predictions of the analytical model, which does not capture these effects. This swelling-induced restriction may be an important mechanism in explaining the changes in apparent diffusion constant observed in the aftermath of acute ischemic stroke.
引用
收藏
页码:1354 / 1364
页数:11
相关论文
共 50 条
  • [1] Robust Monte-Carlo Simulations in Diffusion-MRI: Effect of the Substrate Complexity and Parameter Choice on the Reproducibility of Results
    Rafael-Patino, Jonathan
    Romascano, David
    Ramirez-Manzanares, Alonso
    Canales-Rodriguez, Erick Jorge
    Girard, Gabriel
    Thiran, Jean-Philippe
    [J]. FRONTIERS IN NEUROINFORMATICS, 2020, 14
  • [2] MONTE-CARLO SIMULATIONS OF TRACER DIFFUSION IN ZEOLITES
    PITALE, KK
    RAJADHYAKSHA, RA
    [J]. CURRENT SCIENCE, 1988, 57 (04): : 172 - 178
  • [3] ON THE MAXIMUM DISPLACEMENT PARAMETER IN MONTE-CARLO SIMULATIONS OF MIXTURES
    MONTANI, RA
    [J]. MOLECULAR SIMULATION, 1994, 13 (03) : 231 - 234
  • [4] Monte-Carlo simulations
    Giersz, M
    [J]. DYNAMICAL EVOLUTION OF STAR CLUSTERS - CONFRONTATION OF THEORY AND OBSERVATIONS, 1996, (174): : 101 - 110
  • [5] KNUDSEN DIFFUSION IN CONSTRICTED PORES - MONTE-CARLO SIMULATIONS
    SMITH, DM
    [J]. AICHE JOURNAL, 1986, 32 (02) : 329 - 331
  • [6] MONTE-CARLO SIMULATIONS OF THE GENERALIZED DIFFUSION LIMITED AGGREGATION
    HAYAKAWA, Y
    KONDO, H
    MATSUSHITA, M
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1986, 55 (08) : 2479 - 2482
  • [7] MONTE-CARLO SIMULATIONS OF SURFACE-DIFFUSION AT HIGH COVERAGES
    ROSTKIEREDELSTEIN, D
    EFRIMA, S
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (09): : 7144 - 7154
  • [8] DIFFUSION MONTE-CARLO SIMULATIONS OF HYDROGEN-FLUORIDE DIMERS
    SUN, H
    WATTS, RO
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (01): : 603 - 616
  • [9] AN INTRODUCTION TO MONTE-CARLO SIMULATIONS
    JOY, DC
    [J]. INSTITUTE OF PHYSICS CONFERENCE SERIES, 1988, (93): : 23 - 32
  • [10] On the optimization of Monte-Carlo simulations
    Kalda, J
    [J]. PHYSICA A, 1997, 246 (3-4): : 646 - 658